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(4) Page 14, Equation (16); should be 

W = 7 (D2 - d2) LP, lb. 
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(6) Page 49, Figure 16; Change to Figure 15. 



Errata Sheet 

-2- 
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FOREWORD 

This report was prepared by Battelle Memorial Institute,   Columbus,  Ohio,  on 
Air Force Contract AF 33{6l6)-8290, under Task No.   812802 of Project No.   8128, 
"Design Criteria for High-Speed Power-Transmission Shafts".     The work was adminis- 
tered under the direction of Flight Accessories Laboratory, Aeronautical Systems 
Division.     Mr.   Bruce P.   Brooks was project engineer for the laboratory. 

The studies presented began in May,   1961,  and were concluded in July, 1962. 
Group Director John E.   Voorhees was the engineer responsible for research activity of 
Battelle Memorial Institute. 

This  report is the Final Technical Report of Phase 1 activities.     The contractor's 
report number is G-4869. 

This  report is unclassified. 



ABSTRACT 

Repeated successful operation of high-speed power-transmission shafts at and far 
above their first critical speeds hi.s been achieved.    A basic new analytical technique- 
for the design and analysis of high-speed shafting has been developed using electrical 
transmission line  theory.     Limited experimental work has  shown the technique to predict 
successfully the damper parameters necessary to high-speed shaft operation.     Equations 
relating full-scale and model shaft configurations to produce similar dynamic behavior 
have been formulated.     The experimental application of torque on high-speed shafting 
did not change lateral critical speed.     This is not in agreement with theory,  which pre- 
dicts a decrease in critical speed.     Damping coatings applied continuously along the 
length of high-speed shafts controlled vibration amplitudes to a slight degree at the 
lowest critical speeds.     At higher order criticals the coatings had no desirable effects. 
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INTRODUCTION AND SUMMARY 

In connection with the need for light-weight componerts in military helicopters 
and STOL and VTOL aircraft,   a research program sponsored by the Aeronautical 
Systems  Division has been conducted by Battelle to determine the merits of hypercritical- 
speed power-transmission shafts.     The research program has produced considerable 
information which confirms  the feasibility of such shafts,   and relates their design to 
practical applications. 

For any rotating shaft there exists a series of discrete speeds at which the cen- 
trifugal force resulting from unbalance causes progressively greater shaft deflection. 
The elastic restoring forces developed as the shaft deflects are overcome by the cen- 
trifugal force developed by the deflected shaft. Extremely large deflections and even 
destruction of the shaft and its bearings can result from operation at these speeds, 
called critical speeds. For this reason designers of power-transmission equipment 
normally avoid the problem by operating shafts below their first critical speed. 

There are of course,   disadvantages to restricting operation to below the first 
critical speed.     For transmitting  a given horsepower,  torque and consequently shaft 
size must be increased as operating speed is  reduced.     In case of long  shafts,  the shaft 
size may be  increased above that  size  required to transmit the torque  simply to  raise 
the first critical speed above the operating  speed range.     Alternatively,   the  shaft size 
may be determined by the torque loading,  but additional bearings may be installed to 
support the  shaft and thereby raise its first critical speed.     The major disadvantage of 
these conventional practices applied to aircraft is the weight penalty. 

The  research program has  shown that shafting can be operated consistently far 
above its  first critical speed,   with consequent savings  in shaft  and support weight, 
through the use of one or two damped supports.     Methods have been developed to predict 
necessary damping values and support locations to provide  satisfactory operation at any 
range of speed at and above the first critical.     Methods are also included to relate the 
parameters which provide good operation of one  shaft to any other  shaft,   no matter what 
the  shaft dimensions  or material.     In short,  hypercritical-speed shafting,   with its 
associated advantage in weight,  is a very practical and feasible means of transmitting 
power.     With today's high-speed power  sources  it is especially attractive,   since consid- 
erable weight could be pared from engines and gearing by transmitting power at the  same 
speed as  it is produced. 

Manibcnpi released by ihc authors July 1062 for publicaiion as an ASD Technical Documentary Report. 

ASD-TDR- 62-728,  Ft.   1 



TECHNICAL WORK 

Relationships Between Power,   Speed,   Torque,  Shaft Size,   and 
Critical Speed 

Solid Shafts 

The power-transmission properties of high-speed-shaft sizes  studied in this  re- 
search program can be most easily visualized upon consideration of some basic 
relationships. 

Torque transmitted by a shaft is given by: 

T=^L, (1, 
16 

where 

T    = torque ,   in-lb 

S=  = shear  stress,   psi 

D   = shaft diameter,   in. 

Horsepower transmitted by a shaft is given by: 

hp =   Z7T T(rPm)     , (Z) 
1Z x 33,000 

where 

hp = horsepower 

(rpm) = revolutions  per minute. 

Substituting Equation (1) in Equation (2) gives 

Zn^Sg  (rpm)D3 

hp =  12 x  16 x 33,000 ' (   ' 

This relationship may be further  simplified if a given stress level is assumed. 
For high-quality,  heat-treated steel shafting the highest torsional endurance limit that 
may be expected is around 50,000 psi.     Substituting this value for Ss in Equation (3) 
gives the following result: 

hp = 0. 1557(rpm)D3 . (4) 

In Figure   1 the above  relationship between shaft diameter and speed is shown for 
various horsepowers.     It may be  seen from this figure that  relatively small-diameter 
shafts will transmit large powers at high speeds.     The area in the figure bounded by the 
solid heavy line denotes  the  range of speed and shaft diameters  for which the  shaft test 
machine was designed.     By interpolating between the  constant horsepower lines it is  seen 
that  a 0. 5-inch-diamete r shaft running at 50,000 rpm can transmit nearly   1000 
ho rsepowe r. 
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Transmitting large horsepowers with small-diameter shafts presents the problem 
of cont roiling shaft vibration at the critical speeds.     The  shaft speed at which the first 
principal mode of vibration or first critical speed would occur can be calculated from 
the following equation [Ref. (1)]"": 

rpm = 60 x 1. 57  /£i|= 60 x 1. 57  /%^. -^ --^ ^      ''^i  /^ . (S) /386E   np-i _4    J_ _ 467D   fW 
P      64    TTD

2
 P       ^    -J P 

vhere 

g   = acceleration of gravity,   386 in. /sec'' 

E = modulus of elasticity,   lb/in. ' {30 x 10    for steel) 

I   = section moment of inertia,  in. 4 

w = unit weight of shaft,   lb/in. 

ü   = shaft length between supports,  in. 

P = shaft density,   lb/in. 3 (0. 283 for steel). 

For a steel shaft.  Equation (5) may be reduced to the following: 

4. 8 x 106D ,/> rpm =   . (6) 

Equation (6) gives the first critical speed of a simply supported shaft or a contin- 
uous  shaft on equally spaced simple bearing supports for any shaft diameter and length. 
Solutions of this equation for various  spans between bearings are plotted in solid lines 
on Figure   1.    The second principal mode of vibration of the shaft would occur at a 
speed four times that computed from Equation (6).     The third principal mode of vibra- 
tion would occur at a speed nine times that computed using Equation (6),  and the nth 
principal mode of vibration would occur at a speed n    times the speed computed from 
Equation (6).    It can be seen,  therefore,   that a whole family of curves for higher modes 
of vibration would exist for each curve plotted in solid lines on Figure  1.    Besides the 
curves  representing the first principal mode of vibration,  only the curves for the tenth 
principal mode are  shown in dotted lines to prevent confusion. 

Referring to Figure  1,  a 0. 5-inch-diameter shaft turning at 50,000 rpm would be 
running at the tenth critical speed,  if the span length between bearings were approxi- 
mately 70 inches.    As mentioned,  nearly  1000 horsepower could be transmitted by such 
a shaft.    But without suitable means to damp lateral vibrations the shaft would be use- 
less,  unless ten or more intermediate supports were installed to decrease the span 
length to below that of the first critical speed. 

For a simply supported steel shaft. Equation (6) gives the first critical speed for 
any shaft length and diameter. If n denotes the first, second, or nth mode of vibration, 
the critical speed for any vibration mode can be found by the following: 

* References are given on page 142. 



4. 8 x 106n2D ,-,. rpm =  ■  . (7) 

Figure 2 is a graph of this  equation with a family of curves of n'-D equal to various con- 
stants,   plotted against speed and shaft length.     Figure I also shows the maximum length 
and speed capabilities of the test machine as indicated within the dotted lines.     From the 
figure,  a  70-inch 50, 000-rpm shaft has an n'-D constant of approximately 50.     Then the 
value of n for a 0. 5-inch-diameter shaft equals   10,  meaning that the shaft is running at 
its tenth  critical speed.    A number of intermediate supports could be added to reduce the 
order of the vibration mode to one,  or even less than one to completely avoid critical 
speeds.     The distance between supports to reduce operation to the first critical speed 
for the  0. 5-inch shaft running at 50,000 rpm can be calculated easily.    At the first 
critical n =   1  and n^D = 0. 5.     On Figure Z the intersection of the n   D curve equal to 
0. 5,   and 50,000 rpm,   shows the distance between supports to be about 7 inches.     For 
operation of the shaft below the first critical speed,   ten or more  supports must be added 
to reduce support spacing below 7 inches. 

Figure 2 shows graphically another interesting relation between vibration mode and 
diameter of simply supported shafts.    Suppose the installation using a 70-inch-long shaft 
running at 50,000 rpm had no framework on which to mount intermediate supports along 
its length.    A shaft diameter could be chosen to operate at or below the first critical 
speed.     From Figure  2 the value of n^D for the  70-inch-long,   50, 000-rpm shaft is  50. 
If n is made  equal to   I,   then d must equal 50 inches.     A diameter somewhat larger than 
50 inches would permit operation below the first critical.     Although this example is 
ridiculous from a practical standpoint,   it illustrates the application of Figure  2 in situa- 
tions where the distance between driving and driven members  is fixed. 

Probably most of the situations to which high-speed power-transmission shafts 
might be adapted would be those with considerable shaft-end fixity.     Rather than being 
freely supported,  the  shaft ends would be built-in or cantilevered.     Due to the increased 
stiffness  of such shafts,   their critical speeds are higher than indicated by Equations (6) 
and (7) and Figures  1  and 2. 

The critical-speed equation for any fixed-end solid steel shaft,   and for any vibra- 
tion mode is: 

3. 07 (1. 25n + 0. 637)2106D 
rpm - '      ~     — '  • (8) 

Equation (8) was derived from matärial in Reference 1. Dividing Equation (7) by Equa- 
tion (8) produces the critical-speed ratio of simple to fixed-ended shafts for any vibra- 
tion mode Ti.     The critical-speed ratio is: 

rPmsimple   _ 1. 57n2 ,„. 
rpmfixed        (1. 25n + 0. 637) 

and  is  plotted in  Figure  3 for the first  20 critical speeds. 

At the higher criticals there is less  difference in speed due to the decreasing 
prominence of the two end vibration loops  compared to the total number of loops along 
tin   shaft.     Referring to  Figure  3 the c ritical-speed  ratio for the tenth mode  is  about  0.9. 
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The 0. 5-inch-diameter 70-inch-long steel shaft with simple ends vibrates at its tenth 
i rilical when turning at 50,000 rpm. The sarne shaft with fixed ends must turn at 
50.000/0.9 = 55,600 rpm to achieve the tenth critical speed. Figure 2 shows that the 
same 0. 5-inch-diameter 70-inch-long shaft simply supported runs at its first critical 
speed (n'-D = 0. 5) at about 500 rpm. The critical-speed ratio from Figure 3 for the 
first vibration mode is approximately 0. 44. Then the first critical speed of the same 
shaft,   but with clamped ends is  500/0.44 =1137 rpm. 

Tubular Shafts 

Tubular power-transmission shctfts have some very attractive advantages when 
compared to solid shafts. These advantages can be easily understood with the aid of 
graphs which are developed in this section. 

Equation (1) gives the torque transmission ability versus  solid shaft diameter for 
a certain torsional stress level.    Equation (10) presents the same relationship for a 
tubular shaft: 

7TSS(D4 -   d4) 
T = , (10) 

16D 

where 

D = shaft outside diameter,  in. 

d   = shaft inside diameter,  in. 

If solid and tubular shafts are compared on the basis of transmitting equal torque which 
develops the same  stress levels at the surfaces of the  shafts,   Equations (1) and (10) 
reduce to; 

1/3 
Ds=r^-^v , (ID 

\ D      / 

whe re 

Ds  = diameter of a solid shaft which is torsionally of equal strength as a 
tubular shaft of given dimensions,   in. 

Figure 4 shows a plot of Equation (I 1) which compares the outside-diameter ratio of 
equally stressed solid and tubular shafts with equal torque capacity to the ratio of tubular 
shaft inside to outside diameters.    For instance the 0. 5-inch-diameter solid steel shaft 
was capable of transmitting nearly 1000 horsepower.    If an equally stressed tube of 
0. 8-inch outside diameter were substituted to carry the same power at the same speed, 
the tube inside diameter could be easily calculated from Figure 4.    The  ratio of solid to 
tubing outside diameter is 5/8,  or 0. 625.     From the curve the inside to outside tube- 
diameter  ratio is read to be about 0. 93.     Then a tube of 0. 744-inch bore and 0. 8-inch 
outside diameter can handle the same torque at the same stress level as can the 0. 5- 
inch solid shaft. 

Equation (12) shows the  relationship between critical speed and shaft length for 
tubular steel shafts with simply supported ends: 
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4. 8 x  106    / nZ  7  JZ /17, rpm = —^:  V D    + at . (12) 

Dividing Equation (12) by Equation (6) shows the critical-speed relation between tubular 
and solid shafts for the same shaft length: 

rPmtube      VD
2
 + d2 

(13) rPm solid D 

Substituting Equation (11) produces the relation between tubular and solid-shaft critical 
speeds for shafts which can transmit the same torque at the same  stress level- 

rPmtube     V D2 + d2 

= 37=1     T- (14) rPm solid     ^ D4 . d4 

D 

Equation (14) is plotted in Figure 5. 

The 0. 5-inch solid shaft and the tube with 0. 8- and 0. 744-inch outside and inside 
diameters both can transmit nearly 1000 horsepower at 50,000 rpm.     The torsional 
stress levels of both shafts are equal.     Figure 5 shows that the critical-speed ratio of 
the tube to the solid section is 2. 218.    In other words for the  same vibration mode the 
critical speed of the tube is 2. 218 times that of the  solid shaft. 

Previously it was seen that for the 0. 5-inch-diameter 70-inch-long solid steel 
shaft the first critical speed was  500 rpm.     The first critical speed of the equal-strength 
tube = 2.218 x 500 =  1109 rpm.    Obviously there is an advantage to the use of tubing 
since fewer intermediate supports are needed.     Reference to Figure 2 shows graphically 
the advantage in number of intermediate supports needed when tubular rather than solid 
shafts are used. 

In Figure 2 the intersection of 70-inch span and  1109 rpm occurs at an n2D value 
slightly greater than 1. 1.    Actually the value of n2D is   1. 113,  which can be calculated 
exactly from Equation (7).     This value,  when divided by n2 =  1,  provides a solid shaft 
diameter of 1. 13 inches which is equivalent from the critical-speed standpoint to the 
0. 8-inch-diameter tube of the same length.    Since the vibration speeds of the tube and 
1. 1 3-inch-diameter equivalent solid shaft are identical,  the vibration mode of the tube 
occurring at 50,000 rpm can be calculated easily from Figure 2.    At this speed and with 
a shaft length of 70 inches the n   D value is  50.    Dividing 50 by the equivalent  1.13 diam- 
eter shows n to be equal to 6. 65.     This means that the tube operates between the sixth 
and seventh vibration modes.     To determine the span between intermediate supports 
necessary to permit operation of the tube at the first critical speed find the intersection 
of the line equal to  1. 13 and 50,000 rpm.     The span length £ for this point is   11  inches. 
At 50,000 rpm the introduction of six intermediate  supports permits operation of the 
0. 8-inch-diameter 70-inch-long tube below its first mode of vibration,  while it is neces- 
sary to include ten intermediate supports along the  0. 5-inch-diameter 70-inch-long 
solid shaft to provide operation below the first critical speed.    Both the tube and solid 
shaft can transmit the same horsepower at the same level of stress in the shafts. 
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Another advantage of tubular shafts over their solid counterparts is the reduction 
in shaft weight necessary to transmit the same level of power.    Figure 6 shows the 
curve of the following equation which permits calculation of the weight ratio of equal 
strength tubes to solid shafts: 

w tube D2 - d2 

(15) 
wsoiid YD4_d4y/3> 

^      D      ^ 
where 

^ tube    = weight of a unit length of tubular shaft,  lb 

w „„KH 
= weight of a unit length of solid shaft,  lb. 

Checking Figure 6 for the ratio of inside to outside diameter of 0.93 we find a ratio of 
tube to solid weight of about 0. 33.    For similar torque-transmission ability the tube 
weighs one-third that of the solid shaft. 

Tubular shafts may of course be run with fixed rather than simply supported ends. 
The first critical speed of the 70-inch-long tube with simply supported ends was found 
to be  1109  rpm with an n2D value of 1. 13.    Reference to Figure  3 shows the critical 
speed of a simply supported shaft to be about 0. 44 that of a fixed-end beam.    The first 
critical speed of the tube with fixed ends is approximately 2520 rpm.     Other fixed-end 
critical speeds can be calculated in a similar manner. 

When damped support bearings are provided to permit shaft operation through 
several critical speeds,  the tubular shaft will have to pass through fewer critical speeds 
than an equivalent solid shaft in the same application.    More effective damper design 
should therefore be possible for use with tubular shafts,   since fewer design compro- 
mises would result from dealing with a smaller number of critical speeds. 

Shaft Modeling Procedure 

Numerous successful high-speed-shaft experiments have been made with damped 
intermediate supports.    For instance,  with one damped support bearing included on a 
0. 25-inch-diameter,   89. 3-inch-long steel shaft,   successful vibration suppression was 
obtained at all shaft critical speeds up to the twelfth mode.     This is a remarkable ac- 
complishment,  but it must be possible to extract broader implications from this experi- 
ment to permit the design of successful shafts of different materials,   lengths,  and 
diameters.     To make it possible to achieve similar performance with other shafts a set 
of modeling equations is needed. 

Modeling Equations Relating Dynamically 
Similar Shafts 

The following relationships between dynamic shaft parameters were developed to 
define the basic properties of ail circular shafts of uniform cross section: 
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Characteristic Shaft Weight,  Ws =2- (D2 - d)2 LP,  lb. (16) 

371(0^ - d^)E Characteristic Shaft Lateral Stiffness,  Ks =  ' i '—,   lb/in. (17) 
L" 

Cbaracteristic Shaft Natural Frequency,  w    =  /—2_,   rad/sec (18) 
Ws 

Ksg 

Characteristic Shalt Critical Damping V?lue,   Cs = 2   /—§—§. ,   lb-sec/in. (19) 

where 

D = shaft outside diameter,  in. 

d  = shaft inside diameter,  in. 

L = shaft over-all length, in. 

P = shaft density,  lb/in. 

E = shaft modulus of elasticity,  lb/in. 

g   = 386 in./sec2 

The following  symbols  refer to the intermediate support bearing: 

W= weight of bearing plus  1/3 the weight of each support spring,  lb 

K = combined spring rate of damper springs,   lb/in. 

C = support damping coefficient,   lb-sec/in. 

y- _ distance between support and shaft end,   in. 
over-all shaft length,   L,,   in. 

Four dynamic  scaling ratios exist which relate parameters of shafts and their 
intermediate supports for similar dynamic behavior.     Let subscript 1  refer to a shaft 
configuration of known behavior,  and subscript Z refer to a shaft of different dimensions 
which is to be dynamically similar to the first shaft. 

WS1     WS2 
(20) 

K]      K2 

JlL=JiL (22) 
csl      Cs2 

Xi     = X2. (23) 
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Knowing the support-to-shaft ratios of Equations (20) through (23) for Shaft 1, all that 
remains is calculating the necessary damper characteristics W^, K^, and C2, for the 
diameter,   length,  and materials of the gecond shaft. 

To illustrate the modeling procedure let us say that a 114. 2-inch-long 0. 5-inch- 
diameter aluminum tubular shaft of 20-gage wall thickness is needed to transmit power 
between driving anc driven components.     The shaft ends are to be clamped tightly in the 
spindles of the driving and driven elements,  and shaft speed is to be 30,000 rpm.   Using 
Equations (16) through (19) the characteristic aluminum-shaft parameters are: 

Ws2 = 0. 572 lb 

Ks2   = i. 848 lb/in. 

Cs2   - 0* 1040 lb-sec/in. 

CJ   ,   = 35. 35 rad/sec. s2 

Now it is necessary to know if the vibration mode at the operating speed of the aluminum 
shaft is within the range of successful vibration suppression of one of the damped test 
shafts.     This information can be obtained easily with a fifth relation given by Equa- 
tion (24): 

-1--^., (24) 
"si      ^2 

where the subscripts are as before. 

The 0. 25-inch-diameter,   89- 3-inch-long  solid steel shaft with clamped ends and 
one damped support has been successfully run to the twelfth vibration mode,   which 
occurs at approximately 22,000 rpm.     The parameters of this shaft are as follows: 

Wsl  =  1. 260 lb 

Ksl   =  1. 550 lb/in. 

Csl   = 0. 142 lb-sec/in. 

CJ   ,   =21.8 rad/ sec. s 1 

Substituting values in Equation (24): 

CJ7   =  CJ 2 - "s2 
^_ = 35.35x22,000 = 35^ 700 rpm 

"si 21-8 

This calculation shows that the aluminum shaft could operate at speeds as high as 
35,700 rpm without encountering severe vibrations,  and that a speed of 30,000 rpm is 
well within the range of good operation. 

To establish the damped support characteristics of the aluminum shaft it is neces- 
sary to know the support characteristics used with the 0. 25-inch-diameter steel shaft. 
They are as follows: 
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W! = 0. 609 lb 

Kj =11.6 lb/in. 

Cj = 1. 736 lb-sec/in. 

Xj = 0. 05. 

The aluminum-shaft support characteristics are calculated as follows from Equa- 
tions (20) through (13): 

w2 = w s2 -^L = 0- 5.7ZJn
0- 609 = 0- 276 lb- ' '''• Ws i 1. 260 

i^       ^       Kl        1. 848 x 11.6      .,  Q, ,. ,. K? - K^?  =   :———  =  13. 83 lb/in. Ksl 1.550 

„        „       cl        0. 1048 x 1. 736      .   ,Q ,, ,. 
C2 = Cs2-577      ZJTZ =l-28 1b-8ec/in. 

X2 = Xj = 0. 05 

The aluminum tubular shaft equipped with one damper with the above calculated 
parameters and located 5. 71 inches from a shaft end would transmit power satisfacto- 
rily at 30,000 rpm. 

Since damped shafts related to each other by the modeling Equations (20) through 
(23) have similar vibration characteristics when operated at speeds defined by Equa- 
tion (24) they may be said to be dynamically similar.     No matter how physically dis- 
similar are the shafts,  dynamic similarity car be achieved with the proper selection of 
support parameters.     The use of these modeling equations permits scaling the satisfac- 
tory operational characteristics of a known shaft configuration to any physically dis- 
similar situation. 

Modeling Equations Relating Vibration Amplitude 

If vibration amplitudes  of a certain shaft configuration are known,  then it is pos- 
sible to predict vibration amplitudes of a dynamically similar second shaft configura- 
tion.     If both shafts have an exactly similar distribution of shaft runout,  vibration 
amplitudes for both will be proportional to their maximum shaft eccentricities when run 
at dynamical similar speeds.     This may be seen by defining the following shaft 
parameter: 

Ws e us2 

Characteristic Shaft Unbalance, Fs =  ,  lb , . (25) 

where 

e = maximum shaft runout or eccentricity,  -in. 

Shaft deflection,  y,  is proportional to the force,   Fs,  trying to deflect it,  and inversely 
proportional to the shaft stiffness,  Ks.      Then: 
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F 

Ks gK 

but 

Ksg 

yx TT
5

- =        ,   "    , (Zb) 

(18) 

:. y « e, (27) 

and 
Ysl      Ys2   Yl     VZ 

(28) 

It must be remembered that Equation (28) is true only if Shafts  1 and 2 are modeled 
according to Equations (20) through (24); the deflections,  yj and y-,,  are measured at 
the same  relative position along each shaft; and the  shaft runouts are exactly similar 
in distribution. 

Modeling Equations Relating Shaft Power 
Transmission 

Full-scale transmission shafts will be called upon to carry power in the range 
from 250 to 2500 horsepower.     Simulation of the effects of torsion in the laboratory 
using much smaller horsepower levels is highly desirable,   since the equipment neces- 
sary to transmit low horsepower is less expensive. 

The following defines the  relative horsepower transmission ability of a circular 
shaft of uniforni cross section: 

4 4 
(D    - d4)Sse<J 

Characteristic Shaft Power-Transmission Ability,  hp    = (^9) s D 

where S       = torsional endurance stress,  psi.     The following equation permits scaling 
down of horsepower TiOm full-scale to model values with the same percentage of 
torsional operating stress to torsional yield stress maintained: 

TT^TH^ {30) 
h
Psl    hPs2 

where, hpj  = the actual horsepower transmitted by the  shaft. 

As an example a steel tube of 1. 5-inch outside and  1. 372-inch inside diameter is 
capable of transmitting 2500 horsepower at  17,000 rpm with a resulting torsional 
operating stress of 50,000 psi.     This can be calculated using Equations (19) and (26) 
in the report section entitled.   Relationships Between Power,  Speed,   Torque,  Shaft Size, 
and Critical Speed.    If it were desired to test a model shaft at the same relative stress 
level,   application of Equation (30) would show the necessary value of model shaft 
horsepower. 
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Supposo it were convenient to test at 4,700 rpm a 0. Z5-inch-diameter solid shaft 
of the same material as the full-scale tubular shaft.     The model shaft characteristic 
horsepower transmission ability equals: 

(0. Z54 -  04)SS.J x 4,700 
hpsZ = OTTS  - 73- 6 Sse 

The full-scale shaft characteristic equals: 

(1. 54 -  1. 37i:4)Sse x 17,000 
hpsl  =i r±J^ ;  =  17,000Sse. 

Applying Equation (30) 

hps2      2500 x 73. 6 Sse 
hp-,  = hp.  = —— —  =  10. 84 hp. 

^2 Kl hpsl 17,000 Sse 
H 

Transmitting 10. 84 horsepower through the model shaft produces the  same  relative 
torsional stress level as 2500 horsepower carried in the full-scale tubular shaft. 

Experimental Modeling  Tests 

Seven tests were made in the  laboratory using shafts with support characteristics 
which fulfilled the requirements of Equations (16) through (19).    Shafts were of steel, 
aluminum,   and brass,  with various  lengths and diameters.     Two of the shafts tested 
were tubes.     The critical-speed ratio of the test shaft with the highest first critical 
speed to the shaft with the lowest was 4. 75.     The diameter ratio of the largest to the 
smallest test shaft was 2. 67,  and the ratio of the longest to the shortest length was 
2. 62.     In brief,  the dimensions and critical speeds of the  shafts tested were distinctly 
dissimilar. 

Figure 7 shows a plot of all the ratios of actual shaft critical speeds to charac- 
teristic shaft speed plotted versus the order of the vibration mode.    The test speeds all 
fall within the solid-line envelope.     As can be noted from the figure,  the shaft critical 
speeds determined experimentally show good agreement with each other. 

Five of the seven shafts became excessively noisy or developed excessive vibra- 
tion at the fourth critical,   a fairly good experimental agreement.     Accurate similarity 
was not achieved in the amplitude versus vibration mode curves of the seven shafts. 
Three reasons are responsible for this fact.     The  intermediate support has a nonlinear 
moment-restraint versus  shaft-angle curve.    Second,   some unavoidable inaccuracy 
occurs in adjusting damping.     But probably most important in preventing precise model- 
ing procedure verification was the shaft straightness.     The shafts were bought commer- 
cially and were subject to bending in manufacture and in handling.     The tubing was sub- 
ject to an additional «rror in mass eccentricity,   since the inside diameter was probably 
not concentric with the outside diameter.     Considering these variables we concluded that 
similar dynamic behavior was obtained for a majority of the shafts.     The critical speeds 
were in good agreement in spite of the test variables, which indicates that c ritical speeds 
are not particularly sensitive to shaft runout,  damping tolerance, or varied intermediate 
support moment restraint. 
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Computed Modeling Tests 

In order to eliminate the difficulties encountered in the experimental verification 

of modeling,  it was decided to use the computer.    In the computer program,  calculation 

of shaft deflection is carried out using the exact same damping factor as indicated on 

the input cards.     The program dictates zero moment restraint at the intermediate 

support bearing.     And,   of major importance,  the shaft straightness or mass eccentric- 

ity is controlled exactly and is also one of the computer inputs. 

Two dimensionally dissimilar shafts were selected and the intermediate support 

parameters adjusted to conform to the modeling equations.     Table  1  shows the shaft 

dimensions,  support parameters,  and values of the four modeling relations.     Eccentric- 

ity was the same for both shafts.     Referring to Equation (28), the ratio of vibration 

amplitude to eccentricity, the amplitudes were predicted to be equal since the eccen- 

tricities were equal.     The computed amplitude of the large aluminum shaft was 0. 059 

inch and for the small steel shaft 0. 060 inch at the same location.    The mode shape of 

both shafts was similar.    These two computer calculations are indicated as Runs 35 

and 36 on the   tabulation of runs in the computer section. 

TABLE 1.    PARAMETERS OF THE TWO COMPUTER MODELING TESTS 

Cs, C, 
Computer       D. L. Ws. Ks. lb-sec, W. K. lb-sec/        _W Ji .C 

Test in. in. Material lb lb/in. in. lb lb/in. in. Ws 
Ks cs 

35 0.25        89.3    Steel 1.260        1.550       0.142        0.701 66        0.868    0.556      42.6     6.11    21.8 
36 2^218    174.1    Aluminum     68.3       432 17.4 37.9 18,300    106.3 0.556      42.6     6.11    49.4 

Kote:   Both shafts calculated at the second critical; 2580 rpm for the steel shaft and 5850 rpm for the aluminum shaft.   Eccen- 
tricity,   e. and support location.  X= 0.416. were the same for both shafts.   Amplitudes were measured at the same posi- 
tion for both shafts, and equaled 0.060 in. for the steel shaft and 0.0592 in. for the aluminum shaft. 

Conclusions 

From the experimental tests it is  safe to say that the modeling procedure relates 

shaft and support parameters  so that critical speeds for other modeled shafts can be 

predicted with accuracy.    This in itself is reasonable proof that the modeling relations 

are correct.     From the computer calculations there can be no doubt that the relations 

are correct,   because mode shapes,  amplitudes,  and critical speeds can be predicted 

accurately between modeled shafts. 

Digital-Computer Calculation Procedure,  and Computed Shaft 

Speed and Deflection Results 

Development of design criteria for high-speed power transmission shafts will rely 

on analytical procedures for verifying design predictions.     These analytical procedures 

are adaptable to high-speed computation equipment, and adaptation of the problem for 

solution by digital computer will be presented,  as well as will a discussion of the digital 
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computer prog'-pms.    Shaft critical speeds and the deflection curves were computed for 
various shaft configurations, and results are discussed. 

Digital-Computer Calculation Procedure 

The Vibrating-Shaft Equation.    The problem of determining the vibration of elastic 
bodies requires an infinite number of coordinates for specifying its position since it has 
an infinite number of degrees of freedom.    Consider a shaft mounted in rigid bearings 
as shown in Figure 8.     The first critical speed is determined by calculating the natural 
frequency of lateral vibration for the equivalent fixed-end beam.    The differential equa- 
tion of the vibrating shaft is: 

ä4y_ PA        dZy 
S3 = " SSö^EI"^" (31) 

where 

y = shaft lateral deflection,  in. 

x = distance along shaft,  in. 

t   = unit of time,   sec 

P= shaft density,  lb/in. ^ 

A= shaft cross-sectional area,   in. ^ 

E= shaft modulus of elasticity,  lb/in. 

I  - shaft moment of inertia,  in"*. 

With the boundary conditions for the fixed-end shaft given in Equation (32) below. 

y = 0 and 5*Z = 0 at x = 0 (32) 

y = 0 and ^X = 0 at x = L, 
dx 

where 

L = over-all shaft length,  in. 

the solution for the critical speed and deflection curve may be obtained.     [Ref.   (2)] 

With introduction of an intermediate support having a damping coefficient and a 
spring rate,   as shown in Figure 9,  Equation (31) is written for each span of the shaft. 
In order to solve this equation,  the boundary conditions at the intermediate support 
must be written.     The number of constants of integration to be evaluated is increased to 
eight.     It can be seen that for all but the   most simple support systems the mathematical 
work increases tremendously.     The digital computer has been utilized in the solution of 
the   problem of vibration of high-speed shafts,  by formulating the problem in a manner 
adaptable to solution by computer techniques. 
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Digital-Computer Solution of the Vibrating-Shaft Equation.     If the distributed- 
mass system shown in Figure 9 is replaced by a lumped-parameter system of many 
masses,  as shown in Figure  10,  the solution of the lumped-parameter system will 
approximate that of the distributed-mass  system.     The larger the number of masses, 
the better the approximation of the solution of the   original problem. 

In order to determine shaft behavior using the digital computer,  the uniform shaft 
was approximated by a large number of masses by dividing it into a convenient number 
of equal intervals.    Next, the mass of each section was calculated and divided in half, 
and these halves concentrated at the two ends of the interval.    The shaft between inter- 
vals was assumed to possess stiffness,  but not weight. 

In the determination of shaft behavior there are four quantities to be evaluated at 

each cut; the deflection y,  the slope 0 = --^,  the bending moment M = El —i-,  and the 
dx (ix*: 

d3 
shear force V = El —i-.     It is necessary to find the relation between these quantities for 

dx3 

adjacent intervals.     Figure  11  shows the interval between the kth and the k+ 1st cut and 
the quantities acting.     The following equations are written for the interval of length £c: 

k+l
=Vk + ^ck^k + ek)'  lb' (33) 

Mk+ 1=   Mk + icVk+ 1'  in-lb' t34» 

0k+l
=VfcVk+l-

qcMk'   "^ (35) 

^k +1 = ^k - ^A + hcsk +1
+ f

c
Mk'in-' (36) c 

where 

^k    k + 1  = shear force,   lb 

e^ = eccentricity,   in. 

Vk    k +  1   = deflection,  in. 

ßc\r - inertia force constant,   lb/in. 

M^    k. + 1 = moment>  in-lb. 

ic = shaft length,   in. 

0k    k +  1   = sloPe'   rad 

f = influence coefficient for a moment,   1/in-lb 

q = slope influence coefficient for a moment,   1/in-lb 

hc = deflection influence coefficient for shear force,   in. /lb 

where the first two are the equilibrium equations of the interval subject to the inertia 
force,  or  centrifugal force m^ co^ (y^ + c^) at the  chosen frequency w   .   The last two 
equations are deduced from geometric configurations. 
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FIGURE 11.    SHAFT SECTION BETWEEN STATIONS OF THE DIGITAL-COMPUTER 
PROGRAM WITH FORCES SHOWN 

The coefficients of Equations (33) through (36) are defined in terms of the input 
parameters as follows: 

a„ = -^ ' —      ,   lb/in. , c 386. 4      4     30/   ' 
(37) 

bc = CN^,  lb/in. , 

T   _  TTD4       ■        4 

(38) 

(39) 

c      2EI 

qc =El'   1/lb"in- ' 

£3 
'     ,  in. /lb, 

^V.   lb/in. , 
386. 4 V 30/ 

f 

c      6EI 

_  WN2   /^ 7T ^ 2 

.eck = ac " Q K +bcV-l )-pc ,   lb/in. 

(40) 

(41) 

(42) 

(43) 

(44) 

where 
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a = centrifugal force constant,  lb/in. 

I - shaft length between computer stations,   in. 

D = shaft diameter,  in. 

N = shaft speed,  rpm 

P = shaft density,   lb/in. 

b = damping constant,   lb/in. 

C      = support damping coefficient,  lb-sec/in. 

4 
I       = section moment of inertia, in. 

fc     = influence coefficient,   1/lb 

E      = modulus of elasticity,  lb/in. 

q       = slope influence coefficient for a moment,   1/lb-in. 

h       = deflection influence coefficient for a shear force,  in. /lb c 

p       - support weight constant,   lb/in. 

W     - weight of intermediate support bearing,  lb 

ß  ,   = inertia force constant,  lb/in. 

Q      = index:   Q = 1 indicates presence of a support; 
Q = 0 indicates no support at that station 

K      = intermediate support spring  rate,   lb/in. 

Equations (33) through (36) constitute a set of linear recursion relations among 
the four r quantities Sj^,  M^, 0^,  yj^.     The problem is to determine these quantities for 
a fixed-end shaft; i. e. ,  subject to the boundary conditions that the deflection and slope 
are equal to zero at both ends of the shaft.    Expressing the boundary conditions mathe- 
matically yields: 

Yk =*k =yr "*r = 0 • (45) 

Digital-Computer Shaft-Deflection Program.     The problem of determining the 
deflection of a high-speed power-transmission shaft in fixed-end bearings is the deter- 
mination  of yj^ from Equation (36).     This problem becomes the solution of the four 
r quantities from Equations (33) through (36) for the boundary given in Equation (45). 
Battelle's Digital Computer Program Library contained an IBM 650 computer program 
which calculated the dynamic deflection of shafts.     This program was for a shaft with 
one end fixed and the other end simply supported.    Modification of this program to in- 
clude fixed ends yielded the desired deflection information. 
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The resultant IBM 650 double-precision computer program calculates the deflec- 
tion curve for a fixed-end shaft with damped,  flexible intermediate supports.     These 
supports are located at a mass point,  and a support may be located at each mass.     A 
restriction on the program is that the number of intervals or masses  selected must be 
larger than 3 and less than 50.    Since it was found that the coefficients grew very large 
in magnitude,   equations were calculated starting from each end of the shaft and solved 
near the middle of the shaft.     A double-precision routine (utilizing  18 digits) was used to 
decrease the effect of round-off error.     This enabled the computer to calculate the 
deflection curve up to approximately the thirteenth mode of vibration.     Equation (44) 
necessitates the use of complex algebra. 

Shaft parameters substituted into the computer are the shaft diameter,  length of 
shaft interval,   shaft speed,   specific weight and modulus of elasticity of the  shaft ma- 
terial.     Intermediate-support-bearing information required for the computation includes 
the spring constant,  the damping coefficient,   and the weight of the support bearing. 
Additional information required is the number of stations into which the shaft is divided, 
and the station number where the shaft is broken for computational purposes.    Another 
item required as an input to the computer program is the initial deviation of the  shaft 
from the center of rotation,  or mass eccentricity.     The results obtained from the com- 
puter program for the deflection of shafts are the shear force and moment at the ends 
of the shaft,  the   force at the intermediate support bearing,  and the deflection at each 
station.     If these values of deflection are plotted along the length of the shaft,   a shaft- 
deflection curve results.     Figure   12 shows the deflection curve calculated for a specific 
set of conditions. 

Initial computer calculations showed the importance of the mass  eccentricity on 
the calculation of shaft deflection.     If a constant mass eccentricity was assumed,  it 
would not excite the even mode shapes and the computer would give incorrect deflection 
shapes.     Substitution was made of an assumed parabolic mass eccentricity distribution 
with a maximum of 0. 010 inch at one end.     In order to correlate calculated shaft deflec- 
tions and measured shaft deflections,  it was necessary to use measured values of shaft 
eccentricity.    Some typical measured values of the  shaft eccentricities are  shown in 
Appendix C. 

The computer program for the deflection of high-speed power-transmission shafts 
was utilized to determine the critical speed of the shaft.     A particular critical speed 
could be determined by performing various computer shaft-deflection calculations at 
small intervals of speed on either side of the estimated critical speed.     The amplitude 
of a particular station was plotted versus the  speed of rotation.     Figure  13 shows  such 
a plot.     The critical speed was determined to be the speed at which the amplitude of 
shaft deflection was a maximum.     Although the shaft-deflection computer program 
allowed the critical speed to be determined from a series of runs,  a separate critical- 
speed computer program was prepared to do the job with a series of calculations in just 
one run. 

Digital-Computer Shaft-Critical-Speed Program.    In preparing a program to de- 
termine the  shaft critical speed,   extensive use was made of the computer program 
previously described.     This program determines a shaft speed in a given speed interval 
by maximizing the values of shear force and moment at the fixed ends.     The input infor- 
mation concerning the shaft configuration is identical to that of the deflection program. 
Additional input  information consists of an initial shaft speed,   a final shaft  speed,   and 
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an incremental shaft speed.     An indicator is also included which indicates which of the 
four values is to be maximized. 

Successful determination of the critical speed has been obtained by maximizing the 
fixed-end moment at the last station.     The output consists of the calculated values of 
all of the four factors.     When it is determined that the desired factor has been maxi- 
mized,  the computer will automatically stop calculating.     The speed which produces the 
maximum value of the complex moment is the critical speed. 

Computer Shaft-Critical-Speed and 
Deflection Results 

Successful operation of the two computer programs described above has augmented 
the experimental work considerably,  and has been utilized to perform calculations to 
substantiate the modeling theory.     Table 2 presents a tabulation of computer results in 
this research program. 

Importance of Mass Eccentricity Distribution to Calculate Shaft Deflection.     To 
determine the suitability of the computer program in computing critical-speed shaft 
deflections.   Runs  1 and 2 in Table 2 were conducted with an undamped shaft vibrating 
at its first and third critical speeds,   respectively.    A shaft unbalance or mass eccen- 
tricity constant along the shaft was used as the forcing function to excite critical-speed 
vibrations.     The shaft-deflection curves were as expected in these two runs; one loop 
was present at the first critical,  and three at the third.     However, when shaft deflection 
was computed at the second critical,  there was no change in amplitude across the  shaft. 
Presuming that constant mass eccentricity would not excite the even numbered modes of 
vibration,  a parabolic eccentricity was tried. 

Recalculation of the third critical speed,  Run 3,  with parabolic eccentricity 
showed the program to function correctly at this speed.     The amplitude was less than in 
Run 2,  as was the averaged value of mass eccentricity.     Run 4 was conducted at the 
second critical with the same eccentricity as in Run 3,  and this time  calculated the 
correct two-loop shaft deflection. 

From these tests we concluded the necessity of using a forcing function which 
varies in value across the  shaft length.     All subsequent computer runs were made with 
varied mass eccentricity distribution. 

Further Validation of Computer Program.     Numerous computer calculations were 
performed for fixed-end shafts with three equally spaced rigid intermediate supports. 
Critical speeds were first calculated by hand for particular vibration modes and then 
used as a computer input.     Calculated shaft deflections of sizable value showed the 
correctness of the input speed,  and shaft-deflection shape indicated the validity of the 
computer program.     As explained in the section discussing prediction of critical speeds 
and mode shapes of equally supported continuous beams,  there are as many first- 
vibraticm-mode critical speeds as there are span lengths between bearings.     The com- 
puted deflection curves were of the same  shape as predicted. 
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A number of computer calculations were made with a single damped intermediate 
support.     As before,   the shaft-deflection curves were similar to those expected; in this 
case to experimentally observed deflections.     Shaft critical speeds were also quite 
similar.     However,  difference in vibration amplitude was noted between computed and 
experimental runs. 

The amplitude variation in computed and experimental runs  stems from the diffi- 
culty in adjusting damping exactly,  variations in shaft runout,   and shaft moment absorb- 
ing ability of the damper plate.     In the computer these iteni3 are inputs and not subject 
to variation.     For these  reasons the  computer was used to obtain absolute proof of 
modeling procedure validity. 

Effect of Shaft Mass Eccentricity on Vibration Amplitude.     Computer Runs  31 ,   li, 
26,  and 25 were made with identical input conditions with the exception of shaft mass 
eccentricity.     Table 3 shows the maximum shaft mass eccentricity and the vibration 
amplitude.     This calculated vibration amplitude was found to increase with increasing 
mass eccentricity.     Amplitude was not proportional to eccentricity because of different 
eccentricity distribution along the shafts,  but amplitude did increase with increasing 
mass eccentricity. 

TABLE 3.     TABULATION OF COMPUTED VIBRATION AMPLITUDE 
FOR VARIOUS VALUES OF SHAFT MASS ECCENTRICITY 

Maximum 
Computer Mass Eccentricity, Vibration 

Run in. Amplitude,   in. 

31 0.0079 0.0436 

23 0.010 0.047 

26 0.0192 0.091 

25 0.0344 0. 1072 

Computed Modeling  Procedure  Tests.     Since mass  eccentricity affects vibration 
amplitude it was decided to calculate the deflection of two dynamically modeled shafts 
using the same distribution and maximum value of shaft mass eccentricity.     Computer 
Runs  35 and 36 refer to the dynamically similar model shafts.     As noted in Table 2 the 
shaft dimensions are quite apart from each other,   not to mention the  larger being of 
aluminum and the  smaller of steel. 

Using the procedures found in the  section discussing modeling,   support parameters 
were adjusted to provide dynamically similar operation.     Rotation  speeds were also 
scaled.     Since the distribution and maximum value  of shaft eccentricity were equal it was 
predicted that amplitudes would be also.     The computed amplitudes differed by less 
than 2 per  cent (0. 001  inch),   proof enough of the validity of both the modeling procedure 
and the  computer program. 
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Conclusions 

The computer program has been shown to calculate shaft critical speeds correctly, 
as well as correct shaft-deflection curves.     It is necessary to use a forcing function or 
shaft mass eccentricity which varies with respect to shaft length,  however.     Otherwise 
the even-numbered vibration modes cannot be computed. 

The two computer runs of dynamically similar shafts have shown both the modeling 
procedure and the computer program to be correct in all respects. 

High-Speed Shafting Design by Electrical Analogy 

Conventional methods of analysis of high-speed shaft behavior have been used with 
considerable success in the digital-computer analyses conducted throughout this  re- 
search program.    Although the conventional analysis procedures permitted accurate 
calculation of critical speeds and shaft deflections, they are somewhat cumbersome as 
aids to high-speed shafting design.     An analytical approach to high-speed shafting design 
was therefore sought which would provide more insight into the manner in which shaft 
vibration is related to the dynamic parameters of the shaft and its intermediate support 
bearings. 

The possibility that an analogy might exist between high-frequency electrical trans- 
mission lines and high-speed shafts lead us to perform a detailed study of the similar- 
ities bet-ween the two types of problems.    A particularly attractive feature of such an 
electrical analogy is the fact that exhaustive investigation and analysis of electrical 
transmission lines has developed extensive technology and analysis techniques for the 
solution of the electrical problems. 

As a result of this work an analogy has been developed between high-speed shafting 
and high-frequency electrical transmission lines.     As this analogy was developed late 
in the Phase I research program it must be emphasized that exhaustive checks and veri- 
fications are not yet completed.     The extreme promise of the technique,  v/hich has re- 
sulted in the   successful high-speed operation of an experimental shaft,  justifies further 
detailed study during the second phase of the research program. 

Theoretical Verification of Transmission-Line 
Analogy 

The analogy between the bending vibrations of high-speed shafting and the standing 
waves in an electrical transmission line is valid if the displacements of the shaft are 
strictly sinusoidal functions of position along the shaft.     This is shown by writing the 
differential equation for bending vibrations in the form 

dx^ \äxz/        g    dt^ 
(46) 
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where 

A = cross-sectional area, in. z 

E = modulus of elasticity,  lb/in. ^ 

I   = section moment of inertia,  in. 4 

P = density,  lb/in. J 

g   = acceleration of gravity,   386 in. /sec' 

y   = deflection,  in. 

x  = distance along the shaft,  in. 

t   = time,  sec. 

Now, if ä^y/äx2 = -k y, we obtain 

Elk^ ^=?A^L  , (47) 
äx2       g    dt2- 

where 

k = constant,   1/in. 

which is the ordinary wave equation with a phase velocity equal to (Elk'g/PA)7 .     The 
condition d2y/3x2 = -k2y implies that the bending moment is everywhere proportional 
to the displacement, which results in y = Bj  sin kx + B2 cos kx.     The hyperbolic func- 
tion terms vanish in the general solution of the bending wave equation, 

y = Bj sin kx + B2 cos kx + B3 sinh kx + B4 cosh kx, (48) 

where 

^1   2   3   4 = constants. 

The transmission-line analogy is a useful one because the shape of the bending 
shaft is approximately sinusoidal for all modes of vibration of interest,   except near the 
ends of the shaft,  where the condition ä2y/dx2 = -k2y is not valid for either simply 
supported or fixed-end conditions.     Consequently,  the analogous transmission-line 
computations are not carried out to the ends of the shaft.    A portion of the shaft near 
each fixed end is replaced by the equivalent impedance of a short cantilever beam in the 
manner described in the following section of this report. 

Electrical Analogy of High-Speed Shafting 

The general arrangement of the high-speed shafts and their supports studied in this 
program is shown in Figure   14A.    As indicated in the figure the ends of the shafts were 
rigidly supported in the  spindles of the testing machine.    For the purposes of developing 
a suitable analogy this shaft configuration was considered equivalent to the configuration 
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shown in Figure   14B,  where the  rigidly clamped shaft ends are  replaced by a spring- 
mass combination.     To make this change valid,  the following reasoning was employed: 
for each critical speed of the fixed-ended shaft a shorter  shaft having simply supported 
ends can be found which has the same critical speed.    The fixed-ended shaft is therefore 
considered equivalent to a simply supported shaft joined at each end to a short cantilever 
beam.     The springs and masses shown in Figure  14B attached to the ends of the  shaft 
are equivalent to the effective masses and spring rates of the short cantilevered ends of 
the shaft in Figure 14A. 

The mechanical system shown in Figure  14B is considered equivalent to the 
electrical system shown in Figure   14C for the purposes of the transmission-line analogy. 
In Figure  1 4C the spring-mass combination representing the fixed ends of the shaft has 
been replaced by a capacitance and inductance combination.     At an equivalent distance 
in wave lengths down the transmission line from the end,   a combination of capacitance, 
resistance,  and inductance is placed in series with the line to represent the dynamic 
characteristics of the shaft support bearing.     Each additional shaft support bearing is 
replaced by its analogous resistance,   capacitance,  and inductance at the correct dis — 
tance in wavelengths from the end of the transmission line.     It should be noted here 
that for purposes of wavelength measurements along the line,  the end of the mechanical 
shaft is considered to lie at the juncture between the equivalent simple beam and the 
equivalent cantilever as shown in Figure  14A. 

For efficient energy transfer in high-frequency power-transmission lines the load 
on the transmission line is designed to appear purely resistive at the operating fre- 
quency,  and to have a resistance value equal to the characteristic impedance of the 
transmission line.    In the case of the high-speed shaft the loac' to which vibratory 
energy is to be delivered is the damper located at the intermediate support bearing. 
One,  two,  or more intermediate support bearings may be used.     Figure   14 shows two 
bearings for purposes of illustration only.     The dav     irs at these two bearings  represent 
the loads on the shaft insofar as vibratory energy is concerned.     The intention of the 
design procedure is to select proper values and locations for the intermediate supports 
to match the impedance of the transmission line,  or in this case the shaft,  at the desired 
operating frequencies. 

Relationships Between Mechanical and 
Electrical Quantities 

The first critical speed of a simply supported beam is given by the expression 

f = 1. 57 

where 

Elg 
Lwi4 

Yz 
(49) 

f   = critical speed,   cycles or rev/sec 

E = modulus of elasticity,   psi 

1   = section moment of inertia,   in. 4 

g   = acceleration due to gravity,   386 in. /sec 

w = unit weight of beam,   lb/in. 

.    = beam span length,  in. 
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The moment of inertia of a tubular or solid shaft is given by the expression 

j   _ 7T(D4  -   d4) 

64 

■where 

D = outside diameter,  in. 

d  = inside diameter,  in. 

The weight per inch of a tubular or solid shaft is given by the expression 

w s ZHDJ^dil p ^ 

where 

P = density of shaft material,  lb/in. •* 

(50) 

(51) 

Substituting (50) and (51) in (49) gives 

7.76 

ft   L 
E(D2 + d2) 

P 

% 
(52) 

For steel shafting,  where E = 3 x 107 psi and P = 0. 283 lb/in. 3,   Equation (52) 
reduces to 

f 80 ,000 (DZ + d2) /2 

X2 

For solid steel shafting,   Equation (53) becomes 

f _ 80,000 D 

'      '    £2    " 

(53) 

(54) 

In thfc case of- a sitnply supported shaft,  the length between supports or between 
nodes of a vibrating shaft is equal to one-half a wavelength.     That is, 

i^ (55) 

where 

X = the vibration wavelength,   in. 

Substituting Equation (55) in Equation (54) gives the following: 

f = 320.000 D (56) 

Equation (56) may be rewritten in the following form for convenient use later. 

X. = 565 (Df) 
f 

(57) 
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In the case of a lossless, high-frequency electrical transmission line,  the velocity 
of propagation of an electrical impulse is equal to the velocity of light.     It is called the 
velocity of phase propagation,  and is independent of frequency.    In the case of a lossless 
transmission line [Ref,   (3)], 

1       T^ , (58) 
^eCe) 

where 
v      = velocity of phase propagation 

Le = inductance per unit length of line 

Ce = capacitance per unit length of line 

Also,  for the transmission line 

X=X (59) 

Substituting equation (58) in equation (59) gives 

X =  i !/ (60) 
f(LeCe) /2 

Equation (60) for the wavelength on the electrical transmission line corresponds 
to Equation (57) for the wavelength on the high-speed shaft. 

Mechanical equivalents of inductance and capacitance per unit length of line are 
needed for the   development of the analogy.     Mass per unit length of shaft is clearly 
analogous to inductance per unit length of transmission line. 

Le=mu (61) 

Tr(DZ - d2) P .,,. 
mu=-4^ L— ' <62) 

where 

m^ = mass of shaft per unit length,  lb-sec   /in. 

For a solid steel shaft 

mu = 5. 76 x 10"4D2. (63) 

Capacitance per unit length of the transmission line is analogous to compliance 
per unit length in the mechanical shaft. 

Ce  =1. (64) 
K 

Therefore,  from Equations (61) and (64), 

m 
LeCe--^- (65) 
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From Equations (57) and (60), 

x _ 565 (Df)^, 1 
f f(LeCJ ^ ewe' 

or 
320,000  Df  =—  . (66) 

LeCe 

Substituting (63) and (65) in (66) gives 

K = 184 D3f . (67) 

A basic parameter of the electrical transmission line is the characteristic imped- 
ance of the line.    This is the   impedance that would be offered by a transmission line of 
infinite length.    A line of any finite length,  connected at one end of a resistance equal to 
the line's characteristic impedance, would appear at the other end to present the same 
impedance as an infinitely long line.    An electrical impulse introduced at one end of the 
line would be completely dissipated in the resistive load at the other end.     Thus,  no 
reflection of energy would occur from the end of the line,  and there would be no standing 
waves of voltage on the line.     In such a case, the transmission line is said to be 
"matched" to the  load.    The voltage standing wave ratio,  or ratio of maximum to mini- 
mum voltages along the line,  equals one in the matched case,  as there are no standing 
waves,  and equal voltages would be measured at all points. 

The characteristic impedance of the transmission line is given by the following 
expression [Ref.   (3)]: 

s 

where 

Zs = characteristic line impedance. 

Substituting (61) and (64) in (68) gives 

Ce 

Zs = (mu K)Vz . (69) 

Substituting (63) and (67) in (69) gives the characteristic impedance of a solid steel 
shaft as 

Zs = 0. 325 D2(Df)1//i . (70) 

A limited time was available at the end of Phase I for experimental verification of 
this analogy.    Nevertheless,  several tests were completed,  and highly satisfactory high- 
speed operation was obtained.     During the course of this experimental work it was deter- 
mined that adjustment of the constant term in Equation (70) from 0. 325 to  1. 0 gave 
apparently superior results in actual high-speed shaft tests.    This fact was actually 
discovered by accident,  as a mistake of this magnitude was made in the original develop- 
ment of the analogy relationships.     When the dampers of the test machine were read- 
justed to "correct" the mistake, however,   smoothness of shaft operation suffered.   Pend- 
ing further experimentation,  therefore,  the following expression for characteristic shaft 
impedance will be used: 

Zs = D2(Df)^. (71) 
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The Smith Chart as a Design Tool 

A valuable aid to electrical engineers in the  study of high-frequency electrical 
transmission lines is the Smith chart [Ref.   (3)]  shown in Figure  15.     The chart ia a 
complex plot of load impedance on a transmission line as  seen from various points 
along the  line.    So that a single plot may be used for studies of transmission lines having 
various characteristic impedances,   all impedances are normalized, that is,  divided by 
the characteristic line impedance.     A resistive load equal in magnitude to the impedance 
of the line would therefore appear at the very center of the chart,   at the point marked 
1. 0.    A resistive load equal in magnitude to three times the characteristic impedance 
of the line would be plotted along the  straight horizontal center line of the chart at the 
point designated 3. 0.     Purely reactive loads,  that is,  loads containing no resistive com- 
ponent,  are plotted around the outer perimeter of the chart.     Loads composed of both 
resistance and reactance are plotted at the intersection on the chart of lines representing 
the correct resistive and reactive magnitudes. 

For loads that are not perfectly matched to the line impedance,  that is,   not purely 
resistive and equal to the characteristic line impedance,  the load offers different 
characteristics when the   line length is changed.     Point A on Figure  15 is shown to 
illustrate this.    The normalized impedance of Point A is  0. 3 + jO. 5.    This means that 
the resistance component of the load impedance is equal to 0. 3 times the characteristic 
line impedance,  while the inductive reactance of the load is equal to 0. 5 times the 
characteristic line impedance.     If the reactive component had been negative,  that is, 
capacitive,  the load would have been represented by Point B,  having a value of 0. 3 - 
j0. 5. 

The  radius drawn from the center of the chart through Point A crosses the outer 
wavelength reference circle of the chart at Point C,   equal to 0. 078 wavelength.     This 
particular number of wavelengths has no significance in itself but is useful as a refer- 
ence from which other wavelength measurements may be made.     If measurements are 
made of load impedance from a location down the line from the load toward the genera- 
tor,  the circle drawn through Point A and having its center at the chart center is the 
locus of all measured values of load impedance.     For example,  if a measurement of 
load impedance were made from a point 0. 172 wavelength toward the generator from the 
load,  the measured impedance would be  represented by Point D.     The original load 
impedance was located at 0. 078 wavelength.     Adding 0. 172 wavelength gives 0. 250 wave- 
length.     When this position is located along the outer circle of the Smith chart,  and a 
radius drawn to that point from the center of the chart,  the radius crosses the circle 
representing the locus of load impedance at Point D.     Thus,  from this location,  the load 
would appear to be a pure resistance equal in magnitude to 4. 2 times the characteristic 
line impedance.    At a location  1/4 wavelength from the   load at Point A the apparent load 
impedance would be represented by Point E where the normalized impedance is 0. 88 - 
jl.48. 

Another important piece of information obtained from the Smith chart is the voltage 
standing wave ratio,  abbreviated VSWR.     This quantity,   often called simply the  standing 
wave ratio,   is given by the intersection of the impedance locus with the right-hand sec- 
tion of the   Smith chart center line.     In the example given,  therefore,   the standing wave 
ratio would be 4. 2 as indicated at Point D. 

41 



FIGURE 15.    SMITH CHART FOR STUDIES OF IMPEDANCE MATCHING ON 
HIGH-FREQUENCY ELECTRICAL TRANSMISSION LINES 

Smith chart published with permission of P.   H. Smith and 
Kay Electric Co. 
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Example of HJRh-Speed Shafting Design 
Procedure Using Smith Chart 

As a preliminary verification of the transmission-line analogy of high-speed 
shafting,  it was decided to design and test a damped support system.     Examination of 
15 combinations of variables already tested experimentally proved to be enlightening. 
Studying these cases with the use of the electrical analogy and the Smith chart showed 
that high-standing wave ratios were predicted,   corresponding to large vibration 
amplitudes.    It became apparent that standing wave ratio is a measure of the  severity 
of shaft vibration in the examples studied.    It was also apparent that the high standing 
wave ratios resulted primarily from the high inductive reactance (high mass) of the 
support bearing relative to the shaft.    For this reason it was decided that the largest 
shaft that could be accommodated by the high-speed testing machine would be used,   so 
that the support bearings would appear less massive relative tp the shaft. 

The shaft selected was of solid steel,   1/2 inch in diameter and 138 inches long. 
An arbitrary decision was made to design a damped support bearing for correct imped- 
ance matching at the sixth critical speed,   and to determine the resulting standing wave 
ratios at other critical speeds.    A different starting point for design could have been 
chosen,  but for purposes of a first demonstration this choice was considered suitable. 

It was decided that behavior of the shaft would be examined at the first nine 
critical speeds.    Voltage standing wave  ratio as determined from the Smith chart was 
selected as the parameter to be minimized for smooth operation of the high-speed 
shaft. 

A large number of rather elementary calculations were involved in carrying out 
the design of the damped support bearings.     The essential results of these calculations 
are given in Table 4.     The first 11 items  in the table are basic parameters of the  138- 
inch-long,   1/2-inch-diameter,   solid steel shaft. 

Line  1 in Table 4 lists the critical speeds of the  shaft.    These critical speeds were 
jalculatcd from the   following equation: 

cpm = 3.07 (1.25n + 0. 637)ZD x 106 (8) 

L2 

where 

n        = order of critical speed 

D       = shaft diameter,   in. 

L       = shaft length,  in. 

cpm = critical speed,   cycles per minute. 

Line 2 lists the length of a simple beam which would have the same speed for its 
critical speed as does a  1 38-inch-long beam having rigidly fixed ends.     These simple 
beam lengths were calculated from the expression 

L = nf 8°^LDy/2, (72) 
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where 

L = simple beam length,  in. 

D = shaft diameter,  in. 

f   = critical speed, cps 

n  = order of critical speed. 

Line 3 lists the equivalent length of what is here termed the cantilevered ends of 
the fixed-ended shaft. This length is equal to one-half the difference in length between 
the total shaft length of 138 inches and the equivalent simple beam lengths listed under 
Item 2. 

Line 4 gives the wavelength of the vibrations on the equivalent simple beam, and 
is equal to twice the distance between vibration nodes. 

Line 5 lists the characteristic shaft impedance calculated from the equation 

2        Vi 
Zs = D (Df)      . (71) 

Line 6 lists the stiffness measured at the ends of cantilever beams having the 
lengths listed in Line  3.     If the spindles and bearings of the test machine were perfectly 
rigid the stiffness values in Line 6 could have been computed from standard beam 
formulas.    Because of the finite stiffness of the testing machine spindles and bearings, 
however,  it was considered more accurate to determine the effective cantilever stiff- 
ness experimentally.     Lengths of 1/2-inch shaft equal to the values given in Line 3 
were installed in the testing-machine  spindles,  and the deflection at their ends was 
measured with loads applied at their ends. 

Line 7 lists the   effective mass that could be considered concentrated at the end 
of the cantilevered section of the shaft.     This effective mass was determined by first 
computing the theoretical stiffness of the cantilever,  next computing the theoretical 
natural frequency of vibration of the cantilever by itself,  and finally computing the mass 
which,  together with the stiffness first computed would produce the same natural fre- 
quency for the cantilever beam.     The expression for cantilever stiffness is as follows: 

K = ^ , (73) 
L^ 

where 

K = stiffness of cantilever,   lb/in. 

E = modulus of elasticity,  psi 

I   = section moment of inertia,   in. 

L = cantilever length,  in. 

The natural frequency of a cantilever is given by 
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f = 0. 56 

where 

Elg 
wL4 

Vz (74) 

g   = acceleration due to gravity,   386 in. /sec 

w = unit weight of shaft, lb/in. 

f   - lowest natural frequency of vibration,   cps. 

Since the natural frequency of any vibratory system is given by 

ZTT \ m y 

an expression for effective mass at the end of the cantilever can be derived by combin- 
ing Equations (73),  (74),   and (75).     By this means the effective cantilever mass is found 
to be equal to 

0. 242 wL ,.,/, m =  . (76) 
g 

For a solid steel shaft this expression becomes 

m = 0. 000139D2L , (77) 

where 

L = length of cantilever section of shaft,  in. 

D = shaft diameter, in. 

Line 8 gives the reactance offered by the stiffness of the cantilever beam ends. 
This reactance is equal in magnitude to the stiffness in pounds per inch divided by the 
angular frequency in radians per second.     Like capacitive reactance in electrical 
circuits this reactance is multiplied by -j to give the correct phase angle. 

Line 9 gives the reactance offered by the effective mass of the cantilever beam 
ends.     This quantity is equal to the mass given in Line 7 multiplied by the frequency in 
radians per second.     The quantity is multiplied by +j to indicate the correct phase 
angle. 

Line 10 is the algebraic sum of Lines 8 and 9. 

Line  11 is equal to the value in Line   10 divided by the corresponding characteristic 
impedance given in Line 5. 

The section of Table 4 listing Items  12 through 24 is based upon the   arbitrary 
decision to optimize the damped support bearing for operation of the shaft at its  sixth 
critical speed.     Involved in the design procedure is the assumption that the  critical 
speeds are only slightly changed by the presence of the damped support bearings. 
Experience has  shown this assumption to be sufficiently accurate for practical design 
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purposes.    Design of the damped support bearing will therefore be carried out in this 
case for effective operation at the sixth critical speed of 5330 rpm. 

Line 12 lists the normalized support damping, that is, the value of the damping 
coefficient divided by the corresponding characteristic impedance given in Line 5.    For 
best impedance matcMng at the sixth critical speed the normalized damping value must 
equal 1. 0 at that sp^ed.    The actual damping coefficient must therefore be equal to 
1. 67 lb-sec/in.   so that when divided by 1. 67 the normalized value will equal 1. 0.    The 
normalized damping values at the other critical speeds are equal to  1. 67 divided by the 
corresponding characteristic impedances. 

Line 13 gives the reactance of the support bearing mass.    The weight of the 
bearing assembly used on the testing machine was equal to 0. 56 pounds.     The reactance 
is given by 0. 56 divided by 386,  times frequency in radians per second. 

Line 14 gives the normalized reactance of the support mass, equal to the values 
in Line 13 divided by the values in Line 5. 

At this point it is convenient to refer to the  Smith chart in Figure  16.     Point A is 
plotted at the location -jl. 32,  equal to the normalized reactance of the cantilever given 
in Line 11 for the sixth critical speed.    The radius drawn through Line A crosses the 
wavelength circle at about 0. 3535 wavelength.     Proper adjustment of the damped support 
bearing requires that it be placed at such a location that its own reactance is canceled 
by the reactance of the cantilevered shaft end as seen from the support location.     It 
would be possible, therefore, to locate the damped support bearing at a position where 
the normalized reactance of the support mass,  equal to jO. 485,  would be just canceled 
by the reactance of the cantilever seen from that location.     This condition would result 
if the  support were located 0. 075 wavelength from the end of the equivalent simple 
beam section of the shaft.     This placement of the support is illustrated by Point B in 
Figure  16.    At this time it was decided that support placement on the test machine might 
be critical if an attempt were made to locate it only 0. 075 wavelength from the end of 
the equivalent simple beam.     The value of 0. 075 wavelength was obtained from the 
Smith chart as follows:   the radius drawn through Point B crosses the circle at 0. 4285 
wavelength.     The radius through Point A crosses the wavelength circle at 0. 3535 wave- 
length.     The difference between these two values is 0. 075 wavelength. 

So that the support could be located as far as possible from the end of the equiva- 
lent beam section of the shaft it was decided that stiff support springs would be added 
at the  support bearing.    The stiffest springs conveniently provided on the testing machine 
have an effective rate equal to  120 lb/in.     The reactance offered by these springs is 
given in Line  15,  and is equal to 120 lb/in.   divided by frequency in radians per second. 

Line 16 lists the normalized value of reactance of the support stiffness, and is 
equal to the value in Line  15 divided by the corresponding value in Line 5. 

Line  17 gives the total normalized reactance of the support bearing,  and is equal 
to the algebraic sum of Lines 14 and 16. 

Now that the total normalized support reactance is known,  the required value of 
reactance to be contributed by the cantilever shaft end is fixed for correct impedance 
matching at the sixth critical speed.     Line  18 lists the reactance of the cantilever seen 
from the support location, and in the case of the sixth critical speed it must be made 
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IMPEDANCE OR ADMITTANCE COORDINATES 

FIGURE  16.    SMITH CHART SHOWING APPLICATION OF DESIGN PROCEDURE 
TO 138-INCH-LONG,   1/Z-INCH-DIAMETER SHAFT 

Smith chart published with permission of P.   H.   Smith and 
Kay Electric Co. 
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equal and opposite to the normalized support reactance.     Therefore,  for correct 
impedance matching at the sixth critical speed the reactance of the   cantilever refer- 
enced to the support location must equal -jO. 35.     This value is found at Point C on the 
Smith chart of Figure  16.     The radius through Point C crosses the wavelength circle at 
0, 4467 wavelength.     The distance in wavelengths from Point A to Point C is therefore 
equal to 0. 0932 wavelength. 

Another property of the Smith chart can now be illustrated.    It should be noted that 
one revolution around the chart is equal to a distance along the transmission line of 
0, 5 wavelength.     It is possible, therefore, to obtain the  same impedance match with 
the support bearing located 0. 0932 or 0. 5932 wavelength from the end of the equivalent 
simple beam.    In this case it appeared that operation of the shaft at the lower critical 
speeds would be favored with the  support located farther from the  shaft end.     The deci- 
sion was therefore made to locate the support 0. 59 32 wavelength from the end of the 
equivalent simple beam. 

As the wavelength at the sixth critical speed is 42. 5 inches,   0. 59 32 wavelength 
equals 25. 22 inches.     The distance from the   end of the equivalent simple beam is thus 
25. 22 inches, making a total distance from the end of the actual shaft to the support of 
30. 47 inches.     This is obtained by adding the equivalent length of the cantilever end, 
given in Line 3 as 5. 25 inches,  to the value of 25. 22 inches. 

Now that the support location has been fixed to favor operation at the sixth critical 
speed,   conditions at the other critical speeds may be examined.     The combined nor- 
malized load reactance given in Line 19 has deliberately been made equal to jO which, 
together with a normalized load resistance of 1.0,   results in a voltage  standing wave 
ratio given in Line 24 of 1. 0 for the  sixth critical speed.    Standing wave ratios were 
determined for the other critical speeds to determine the effectiveness of damping at 
those speeds. 

At the   seventh critical speed,  for example, the following determinations can be 
made.     The normalized reactance of the cantilever equal to -jl. 38 is  shown at Point D 
on Figure 16.    The radius through Point D crosses the wavelength circle at 0. 3496 wave- 
length,  given in Line 22.    As the  support is located 30. 47 inches from the end of the 
shaft,  it can be seen that it is located 26. 07 inches from the end of the equivalent simple 
beam.     This value is obtained by subtracting the equivalent length of cantilever beam in 
Line 3 from 30. 47 inches. 

In Line 21 the number of wavelengths from the simple beam end to the support is 
equal to the distance in Line 20 divided by the wavelength in Line 4.     The wavelength 
reading at the support bearing location.   Line 23,  is obtained by adding the values in 
Lines 21 and 22.     Integral numbers of half-wavelengths may be disregarded,  as they 
represent identical points on the Smith chart.     The value in Line 23 is therefore listed 
as 0. 0556 wavelength,  although the sum of Lines 21 and 22 equals  1. 0556 wavelengths. 
The reactance of the cantilever seen from the support location is shown at Point E.   This 
value equals +j0. 37 and is located by a radius drawn through the wavelength circle at 
.0. 0556 wavelength. 

The total normalized support reactance in Line  17 is added to the reactance of the 
cantilever as seen from the support in Line  18 to give combined normalized load react- 
ance in Line  19.     The combined normalized load reactance in Line  19,  together with 
the normalized load resistance or damping in Line  12 represents the total load imped- 
ance.     For the seventh critical speed the total load impedance is therefore 0. 87 + jO. 83. 
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This value is plotted at Point 7-in Figure   16.     The circle drawn through Point  7 with its 
center at the chart center crosses the right-hand section of the chart center line at a 
value of Z. 4.     This value is  equal to the predicted voltage  standing wave  ratio for opera- 
tion at the  seventh critical speed. 

This  same procedure was followed for each of the other critical speeds to deter- 
mine voltage  standing wave  ratios.     It will be  seen from Line  Z4 that high values  of 
standing wave ratio were predicted for the first,  fourth,   and ninth critical speeds,  with 
a moderately high value predicted for the eighth critical speed.     The values predicted 
for the second,   third,   fifth,   sixth,   and seventh critical speeds  are all low,   predicting 
effective damper action at these speeds. 

At this point in the design procedure it was decided that a second support should 
be added,  designed for optimum performance at the fourth critical speed.     This choice 
was made because previous experience had shown that vibrations at the first critical 
speed seldom were serious,  while if conditions were optimized for the ninth critical 
speed bad vibrations at the fourth critical could prevent ever achieving operation at the 
ninth. 

Lines 25 through 37 of Table 4 list parameters for the  second dannped support 
which was designed for operation at the fourth critical speed by the  same procedure as 
that followed above.    Following the design of this support,   standing wave  ratios were 
checked at the first,   eighth,   and ninth critical speeds.     The values obtained indicated 
that besides  controlling the fourth critical speed,  the  second support  should be quite 
effective at the first and eighth criticals as well.     This  support,   like the first one,   was 
relatively ineffective at the ninth critical speed,   so  severe vibrations were anticipated 
at speeds around  11,000 rpm. 

Experimental Demonstration of Design Procedure 

The  shaft testing machine was set up with two damped support bearings at the 
locations and having the parameters given in Table 4.     The very first operation of the 
machine was fully successful using these values.    Operation of the shaft was  smooth at 
each of the first eight critical speeds.     As the shaft speed exceeded  10,500 rpm, 
approaching the ninth critical speed,  noise became  apparent.     Project personnel were 
reluctant to operate the shaft at or above the ninth critical speed because of the severe 
sound of the vibrations at that speed.     This general behavior tended to support the 
general theory and calculations made in designing the  supports. 

At the encouragement of the technical monitor of the project from Wright- 
Patterson Air Force Base,   speeds of the test machine were gradually increased during 
a demonstration on July 5.     Vibration at the ninth critical speed was  slightly noisy, 
though not as violent as expected.     The  shaft did not touch the metal guards which 
surrounded it at a radial clearance of only 1/8 inch.    After  11,000 rpm was exceeded, 
speed increased smoothly with little obvious distress to the machine.     In a series of 
runs made on July 5 the  speed was gradually increased to 45,500 rpm.     Some noise 
developed at 2. or 3 speeds in this range; however,   shaft operation in general may be 
termed the best achieved during the course of the research program. 

Because a considerable time is  required for the calculations  illustrated it has  not 
yet been possible to calculate,  using the newly developed procedure,   the performance to 
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be expected of the test shaft over the entire speed range covered.    Shaft speed during 
the tests exceeded the eighteenth critical speed.     Behavior of the  shaft over the  speed 
range up to  and including the ninth critical speed is closely similar to the predicted 
performance. 

The positive  results achieved in this first demonstration point to the extreme 
promise of the newly developed theory as a high-speed shafting design tool.    Additional 
experimentation and analysis will be  required for full confirmation of the theory. 

It should be noted here that following the  successful demonstration of the shaft a 
numerical error was found in the calculations of characteristic shaft impedance.   When 
the damping values used in the test were changed to account for this error,   shaft opera- 
tion suffered.     For this reason,   as noted previously in the derivation of the analogy,  the 
equation for characteristic shaft impedance was corrected by a constant factor to pro- 
duce the damping values which had already been used in the successful first demonstra- 
tion.     Additional work with this design procedure should serve to develop the optimum 
correction factors and design techniques for successful high-speed shaft operation. 

Of general interest is the fact that the example  shaft tested has a power trans- 
mission capability of approximately 900 horsepower at the maximum speed of 45,500 
rpm achieved during tests.     This speed limitation was imposed not by the behavior of 
the shaft,  but by slippage of the flat drive belts on the testing machine.     The ultimate 
speed and power transmission capacity of this  shaft are therefore not yet known. 

The first demonstration of this design procedure was aimed at satisfactory shaft 
operation through the  eighth critical speed.     A far wider speed range was achieved.   It 
is reasonable to expect that future design efforts with more ambitious objectives than 
this first one will achieve even more satisfactory shaft operation in the high-speed 
range.     The most obvious trouble spot,  the ninth critical speed,  was identified in the 
design process,   and presumably could have been controlled by a change of support 
parameters. 

Determination of Shaft Lateral Critical Speeds 

The design and analysis of power-transmission shafts for hypercritical-speed 
operation requires  relatively accurate knowledge of the critical speeds.    Selection of 
the dynamic parameters of the damped supports is dependent upon the discrete speeds 
at which vibration must be  suppressed. 

Critical Speeds and Vibration Node Position of 
Shafts Supported Only at Their Ends 

The first section following the heading Technical Work presents formulas and 
curves to predict critical speeds of shafts  supported only at their ends.     Both simply 
supported and fixed-end shafts are discussed.     Indication from the Sponsoring Agency 
has been that fixed-end shafts  represent more closely the configuration to be expected 
in the majority of practical installations.     Hence,   research has been directed toward 
shafts with this type of end fixity. 
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The  critical-speed formula for any circular  shaft with both ends built-in is: 

2 

cpm = ^8c   /E(D^d^) > {78) 

L2   V P 

where 

D = shaft outside diameter,   in. 

d   = shaft inside diameter,   in. 

L = shaft length,   in. 

P = shaft density,   lb/in. 

E = shaft modulus of elasticity,   lb/in. 

c   = proportionality constant 

= (1. 250n + 0. 637)2 

n   = number of the vibration mode. 

Most work has been done,   in both the digital-computer program and experimen- 
tally,   with solid steel shafts.     The resulting simplified critical speed formula fur solid 
steel shafts with both ends built-in is: 

3.07c D x 106 ,nn, cpm = -j  . (79) 

An important aspect of shafts vibrating at critical speeds is the position of the 
vibration node.    A vibration node is characterized by absence of vibration amplitude, 
while an antinode is termed the position along the  shaft of the maximum vibration.   For 
instance at the first critical speed the antinode falls half-way between the  shaft ends, 
and the nodes at each shaft end.     At the third critical speed three vibration loops appear 
and there are three antinodes — one at each vibration loop.    There are four nodes how- 
ever; two appear at the  shaft ends and the other two at 35. 9 per cent of the shaft length 
from each end.     The shaft length between nodes is the length of a vibration loop. 

The formulas which describe node position along the shaft are given below. 

For the position of the node nearest the shaft end: 

Xl  =     X:Zr? .       for n = 4 (80) 1       n + 0. b 

Xj  = 0. 359 for n = 3 (81) 

X1 = 0. 50 for n = 2. (B,') 

For the position of the node second from the  shaft end; 
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For the  position of the  node third from the  shaft end: 

X3 =   3-25      , (84) 
i      n + 0. 5 

and so on where: 

v    _ Distance between the node in question and the shaft end 
Over-all shaft length 

Table 5 lists the critical-speed proportionality constant,  c,  and node location,  X, 
through the first 20 critical speeds for any shaft with fixed ends.    The formulas for c and 
and X were derived from a reference table in a vibrations textbook [Ref.   (1)]. 

Critical Speeds of Fixed-End Shafts With Simply 
Supporting Equally Spaced Rigid Intermediate Supports 

When rigid equally spaced intermediate supports are included along a shaft with 
fixed ends, the determination of critical speeds becomes more involved.    One difficulty 
stems from the different moment absorbing ability of the bearings, when a fixed-end 
shaft is supported between ends by bearings of the self-aligning type.    Another difficulty 
is occurrence of critical speeds not predicted by the simple formulas included else- 
where in this report.    These difficulties have been discussed and solved in an article 
entitled.  Natural Frequencies of Continuous Beams of Uniform Span Length.   [Ref.   (4)] 

Consider a fixed-end shaft with three equally spaced simple bearings included 
along its  length.     Since lateral shaft stiffness is greater at the  end spans,  the first 
critical speed is a compromise between the fixed-hinged end spans and the  simply 
supported center spans.     As the number of supports increases,   or higher critical 
speeds are encountered,  the number of simple vibration loops overshadows the two 
fixed-hinged loops adjacent to the  shaft ends.     The shaft critical speed for many vibra- 
tion loops begins to approximate that of a continuous beam with as many equally spaced 
intermediate  supports and with the shaft ends  simply supported. 

Discussing the example given before with three equally spaced intermediate 
supports there are not one but four critical-speed vibrations which correspond to the 
first mode of vibration.     Figure   17 shows the deflection shapes of this shaft for the first 
two groups of natural modes,   and the four critical speeds occurring in each group. 

The first critical speed of the first group of natural modes has  a deflection curve 
with simple vibration loops at the center and fixed-hinged loops at each end.    From the 
aspect of lateral shaft stiffness,  this is the least stiff arrangement of the loops and 
therefore it appears at the lowest critical speed.     The second speed occurs at the loop 
orientation to present the next higher over-all shaft stiffness.    In this situation the 
center support bearing acts as would a fixed or moment-absorbing member.    The third 
speed occurs at the next higher over-all shaft stiffness with a total of four of the five 
shaft bearings acting as n^oment-absorbing members.    At the fourth speed of the first 
group of natural modes all support bearings act as built-in shaft supports,  and provide 
the highest critical speed which can occur with one vibration loop per span between 
bearings.    In the second group of natural modes the sequence repeats itself with the 
basic difference that there are two instead of one loop between support bearings.     The 
number,  h,   in Figure  17 refers to the number of shaft span lengths between bearings. 
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TABLE 5.   CRITICAL-SPEED PROPORTIONALITY CONSTANT c AND NODE LOCATION X THROUGH THE FIRST TWENTY 
CRITICAL SPEEDS OF A SHAFT WITH FIXED ENDS 

HO 

1 3. 5u -- -- -- -- -- -- -- -- -- 

,-1 9.£2 0.500 -- -- -- -- -- -- -- -- 

3 19.27 0.359 -- -- -- -- -- -- -- -- 

4 31.75 0.278 0.500 -- - -- -- -- -- -- 

5 47.4 0.227 0.409 -- -- -- -- -- -- -- 

6 66.2 0.192 0.346 0.500 - -- -- -- -- -- 

7 88.1 0.167 0.300 0.433 -- -- -- -- -- -- 

8 113 0.147 0.265 0.382 0.500 -- -- -- — -- 

9 141 0.132 0.237 0.342 0.447 -- -- -- -- -- 

10 172 0.119 0.214 0.309 0.405 0.500 -- -- -- -- 

11 207 0.109 0.196 0.283 0.370 0.457 — - -- -- 

12 244 0.100 0.180 0.260 0.340 0.420 0.500 -- -- -- 

13 285 0.0926 0.167 0.241 0.315 0.389 0.462 - -- -- 

14 329 0.0862 0. 155 0.224 0.293 0.362 0.431 0.500 -- -- 

15 376 0.0807 0.145 0.210 0.274 0.339 0.403 0.467 -- -- 

16 426 0.0757 0.136 0.197 0.258 0.318 0.379 0.439 0.600 - 

n 479 0.0714 0.128 0.186 0.243 0.300 0.357 0.414 0.471 -- 

16 535 0.0676 0.122 0,176 0.230 0.284 0.338 0.392 0.446 0.500 

19 595 0.0641 0.115 0.167 0.218 0.269 0.320 0.372 0.423 0.474 

20 657 0.0609 0.110 0.158 0.207 0.256 0.305 0.354 0.402 0.451 0.500 
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The number,  h,  also indicates the number of critical speeds for each group of natural 
modes.     The number i refers to the position in the vibration sequence.     The number nj 
is a proportionality constant used in critical-speed calculations. 

The critical speed for any round shaft with fixed ends can be found from the 
follov.ing formula: 

cpm —yE(DVd2)' (85) 
ü2 

where 

£    = span length between supports,  in. 

n^ = proportionality constant 

other   symbols as before. 

Converting the equation for use with solid steel shafts gives the more simple  relation: 

4. 8 x lO^ (ni)
2D 

cpm =  _   . (86) 
£z 

Table 6 lists values of the critical-speed proportionality constant,   n-,  with re- 
spect to number of spans between supports,  h,  and vibration speed number,   i.     With 
these values critical speeds can be calculated,   and applied to the appropriate  shaft- 
deflection curve adapted from Figure  17, 

Table 7 lists comparative values of critical speeds calculated using the above 
equations,  determined experimentally,  and calculated by the digital-compute r program, 
of fixed-end shafts with equally spaced rigid support bearings.     In the experimental 
work critical speeds were determined by averaging the speeds at which the test shaft 
first contacted the shaft guards as  shaft speed increased and decreased through the 
critical.    In the computer tests the speed at which shaft amplitudes were computed to 
be substantial,  was chosen as the critical speed.     The tabulation shows  reasonably good 
correlation of calculated and observed speeds,  indicating that calculation procedure is 
correct. 

Critical,Speeds of Fixed-End Shafts With One 
Intermediate Support Not Centrally Located 

Numerous experimental tests have been conducted with one intermediate support 
positioned away from the shaft center.     Critical-speed vibrations have been successfully 
controlled only when the spans are unequal in length,   which complicates the critical- 
speed problem.     Determination of critical speed with various support positions has been 
made experimentally both with one rigid and one damped intermediate support. 

Using a steel test shaft of 1/4-inch diameter 89. 3 inches long,  a rigid support 
was positioned at many locations between the shaft end and mid-point.    At each rigid 
support location,   shaft speed was increased through critical speeds until the noise of 
the shaft meeting the shaft guards became highly objectionable.     Lateral-vibration mode 
shape and critical speed were recorded versus  support location.     Figure  18 shows a 
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TABLE G.     VALUES OF ni VERSUS h AND i FOR FIXED-END SHAFTS WITH EQUALLY SPACED 

SIMPLE INTERMEDIATE BEARINGS 

i 

h:   1 2 3 4 5 6 7 8 9 Id 

1 1.51 1.25 1.13 1.08 1.05 1.04 1.03 1.02 1.02 1.02 

2 2.50 1.51 1.37 1.25 1.18 1.13 1. 10 1.08 1,00 1.05 

3 3.50 2.25 1.51 1.42 1.32 1.25 1.20 1.16 1.13 1.11 

4 4.50 2.50 2.13 1.51 1.45 1.37 1.30 1.26 1.21 1.18 

6 5.50 3.25 2.37 2.08 1.51 1.46 1.40 1.34 1.29 1.25 

6 6.50 3.50 2.50 2.25 2.05 1.51 1.47 1.42 1.37 1.J2 

7 7.50 4.25 3.13 2.42 2.18 2.04 1.51 1.48 1.44 1.39 

8 8.50 4.50 3.37 2.50 2.32 2.13 2.03 1.51 1.49 1.45 

9 9.50 5.25 3.50 3.08 2.45 2.25 2. 10 2.02 1.51 1.49 

10 10.50 5.50 4.13 3.25 2.50 2.37 2.20 2.03 2.02 1.51 

11 11.50 6.25 4.37 3.42 3.05 2.46 2.30 2. 16 2.06 2.02 

12 12.50 6.50 4.50 3.50 3.18 2.50 2.40 2.25 2.13 2.05 

13 13.50 7.25 5.13 4.08 3.32 3.04 2.47 2.34 2.21 2.11 

14 14.50 7.50 5.37 4.25 3.45 3.13 2.50 2.42 2.29 2.18 

15 15.50 8.25 5.50 4.42 3.50 3.25 3.03 2.48 2.37 2.25 

16 16.50 8.50 6.13 4.50 4.05 3.37 3.10 2.50 2.44 2.32 

n 17.50 9.25 6.37 5.08 4.18 3.46 3.20 3.02 2.48 2.39 

IS 18.50 9.50 6.50 5.25 4.32 3.50 3.30 3.08 2.50 2.45 

19 19.50 10.25 7.13 5.42 4.45 4.04 3.40 3.16 3. 02 2.48 

20 20.50 10.60 7.37 5.50 4.50 4.13 3.47 3.25 3.06 2.50 
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TABLE 7.    HAND-CALCULATED VERSUS EXPERIMENTAL AND 
COMPUTER-CALCULATED CRITICAL SPEEDS OF 
FIXED-END STEEL SHAFTS WITH EQUALLY 
SPACED RIGID SUPPORTS 

L,  in. h 

Firs t Group of Mc des Second Grc up of Modes 

d,  in. 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

Cri tical Speed - - Calculated,   rpm 

89.3 3 
1740 
1900 

Experimental, rpm 

1/4 
2555 
2550 

3105 
2975 None 5660 

6300 
7640 
7450 

8490 
8300 None 

1/8 63 4 
2830 
2772 -- 

4900 
4960 -- -- -- -- -- 

1/4 89.3 4 
2810 3770 4870 
3095 3850 4800 

1/4 126 4 
1410 
1470 

1890 
1951 

2445 
2448 

2675 
2738 

5240 
5275 

6120 
6125 

7090 
7000 -- 

1/2 126 4 2830 3790 4900 5550 
2935 3820 4850 5445 

C] ritical Speed - Calculat 
Comput 

ed,   rpm 
ed,   rpm 

1/8 126 4 
708 
702 

948 
940 

1225 
1213 

1387 
1367 

-- -- -- -- 

1/2 120 4 
3110 
3070 

4180 
4120 

-- -- -- -- -- -- 
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summary of the data collected.     Observed speeds are noted,  and for the  same vibration 
modes the speeds generally fall in a smooth curve as shown in the figure.     The curve 
marked 1-4 means that one vibration loop occurs in the shorter span,  while four loops 
are  seen in the longer span. 

The lower left portion of Figure  18 shows  speed of each vibration mode to increase 
as  support location progresses toward shaft mid-point.    Since,   as observed in the tests, 
the vibration of the loops in the longer section of the shaft is more severe than that of 
the  single  loop in the shorter span,  the vibrations in the longer span are the more 
dominant.     This is  evident from a glance at the lower left portion of the figure,  which 
shows the  critical speed of each vibration mode to increase as the long span becomes 
shorter. 

However,   as  support location proceeds toward mid-point,  a point is reached where 
the vibration amplitudes in both spans are equal.     This support location is coincident 
with a vibration node point.     Then as the support is again moved toward shaft mid- 
point,  the  short span vibration becomes predominant and speed of the particular vibra- 
tion mode decreases. 

The x's shown on Figure  18 refer to predicted speed and location of vibration 
nodes.     The tabulation of node position,   X,  and critical speed constant,   c,   is listed as 
Table 5 in this section.     There is good agreement between predicted and measured 
speeds,  as well as predicted and measured node locations.     The experimentally deter- 
mined node position occurs at the   point of maximum speed for any certain mode of 
vibration. 

For the  various  single damped support tests critical speeds followed the same 
pattern and occurred at the  same approximate speed as for the  rigid single  support 
test.     Curves of critical speeds versus support location for damped supports can be 
found in the  section discussing high-speed shaft operation.     Results of the  single damped 
tests showed that good vibration control might be  secured if the damper were not located 
at a vibration node point.    Since the damper is active only when shaft vibration occurs 
at the damper,   it must be positioned away from vibration nodes.     Figure  19 shows a 
series of curves which represent the data of Table 5,     The  curves connect node positions 
which have similar characteristics,  and the ordinate plots vibration speed for a 1/4- 
inch-diameter 89. 3-inch-long steel shaft with clamped ends.     It can be  seen from the 
figure that damper locations other than toward a shaft end will eventually be positioned 
at or close to a node.     This is undoubtedly the reason the   single damped support tests 
have shown consistently better operation with the damper close to a shaft end,   rather 
than toward shaft mid-point. 

Critical Speeds of Fixed-End Shafts With Damped 
Multiple Intermediate Supports 

One Support Fixed Close to Shaft End and Other Varied.     A series of tests using 
two damped intermediate supports produced the critical-speed pattern shown in Fig- 
ure  20.     One damped support retained its position close to a shaft end,   while the other 
was varied between the  shaft mid-point and the other end.     Comparison of Figures   19 
and 20 shows a very similar orientation of vibration modes and speeds at which they 
occur.     Figure  20 terminology is the  same as previously used; for instance,  the curve 
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described by  1-3 nieans that one vibration loop is present in the  shorter span side of the 
novable support,  and three loops occur in the long  span between supports. 

The x's again indicate critical speeds and node locations of the same size shaft, 
but without intermediate  supports.     There is good agreement between peaks of the 
turves and x's,   indicating that the presence of the  second damper fixed close to one 
shaft end did not materially alter vibration speeds with respect to those of an unsup- 
ported shaft,  or a shaft with one variably positioned damper. 

Two and Three Variably Positioned Supports.     Figures 21  and Z2 show curves of 
tests with two and three damped supports,   respectively.     The positions of the supports 
are defined by the number,  k,  which is the ratio of the shortest span length between 
dampers to the next longer span length.    A value of k equal to 1. 0 means that the spans 
are divided evenly,  while k = 0. 8 means that the shortest span is 0. 8 the length of the 
next longer,   and so on.     In these two test series span orientation was  such that the 
shorter spans were adjacent to the shaft ends.    More detail on this  subject is included 
in the section discussing high-speed shaft operation. 

Figures 21 and 22 indicate shaft critical speed and vibration mode with respect to 
support position.     The numbers next to the vibration-speed points refer to the number of 
vibration loops along the total shaft length.     There is no ovbious pattern in the critical 
speeds and vibration modes as was seen in Figures   19 and 20.     Critical speeds of an 
unsupported fixed-end shaft of the same size are indicated on the curves by dashed 
lines.     The only pattern which emerges from these plots is that shaft critical speed 
generally occurs at a different value than indicated by the dashed lines. 

Conclusions 

Lateral vibration critical speeds of transmission shafts with simple and fixed- 
end supports can be calculated accurately.     The positions of vibration nodes can also be 
predicted with accuracy.    Knowing the critical speeds of unsupported shafts is neces- 
sary so that suitable means can be applied to limit vibration in hypercritical-speed 
applications. 

Critical speeds of continuous  shafting with equally spaced rigid supports can also 
be  predicted.     Reference (4) has indicated,   and experiment has shown,  that there are 
as many critical speeds of each order as there are equal spans in a continuous beam 
with equally spaced rigid supports.     That is, with three equally spaced rigid supports 
between the end supports,  making four shaft spans,  there will be four first critical 
speeds,  four second criticals,  and so on. 

In tests with one rigid support positioned at various locations along the shaft there 
are consistent changes in critical speeds of the various vibrations modes.    As the sup- 
port progresses toward the shaft mid-point,  critical speeds increase to a peak and then 
start to decrease.     The peak speed occurs at the node position for the particular 
vibration mode,  and indicates that vibration frequencies of the shaft sections on either 
side of the support are equal and matched.     From the numerous single damped support 
tests made,   it is  safe to say that shafts with single supports, whether damped or rigid, 
perform identically so far as critical speed is concerned. 
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A test of two damped supports with one fixed quite close to a shaft end showed 
similar critical speeds and mode-shape curves. However, in tests of two and three 
dampers variable in location and considerably away from the shaft ends, the pattern 
of critical speeds was not apparent. 

Effects of Axial Shaft-End Force and Torque on Shaft Critical Speeds 

The problem of determining the shaft critical speed for various shaft end loading 
conditions of axial force and torque is important to the development of design criteria 
for power-transmission shafts.     Work on this problem consisted of the investigation of 
the effect on critical speeds as predicted by theoretical work,   and investigation by 
experimental tests.     The theoretical results were compiled from a search of the litera- 
ture on shaft critical speeds,  while the experimental tests were performed in the high- 
speed shaft test machine.     The effect of each external load upon the shaft critical speed 
was investigated separately.    Inasmuch as these loads will interact when applied to a 
shaft simultaneously,  the effect of combined loads was also investigated.     A comparison 
of the theoretical and experimental results is presented toward the end of this  section. 

Theoretical Work 

Effect of Axial Force.     The problem of determining the frequency of lateral vibra- 
tion of a beam subjected to an axial compressive force has been solved [Ref.   (5)].     This 
problem is identical to the problem of determining the critical speed of a shaft subjected 
to an axial compressive force [Ref.   (6)].    A vibrating beam subjected to an axial 
compressive  force, F,  has a deflection curve,   see Figure 23,  under static lateral load 
given by the following equation: 

djr El^-i- = - M - Fy , (87) 

where 
dx^ 

E = modulus of elasticity,  lb/in. 

F = axial force,   lb 

I   = moment of inertia,   in. 

M= bending moment caused by lateral load,   in-lb 

y  = deflection,   in. 

x  = distance along shaft,  in. 
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FIGURE 23.    DEFLKCTION CURVE OF VIBRATING BEAM SUBJECTED 
TO AN AXIAL FORCE 

By differentiating twice the following equation is obtained. 

 '   El —t      = w- F 
dx^ dx^ dx 2  ' 

(88) 

where 

w = lateral load on beam, lb/in. 

Substitution of the inertia force for w gives the equation for the lateral vibration of the 
beam. 

—      El—^)+F—^ = - f , 
A*

2
 v     ;w2/       ?iv2       o   MZ 

2 

Ox2 g    St' 
(89) 

where 

A = cross sectional area,  in. 

g   = acceleration of gravity,   386 in. /sec 

P = density,   lb/in. ^ 

t   = time,   sec. 

Assuming that the beam is prismatic and that the beam performs one of the natural 
modes of vibration,  the solution is in the form 

y = X (Be cos wt + B^ sin art) , (90) 

where 

Bc ,  = constants 5, 6 

X = function of x 

u> = frequency,   rad/sec. 

Substitution of Equation (90) into Equation (89) yields 

Elälf+F^X-AP^^ 

dx4 dx2       g 
(91) 
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(92) 

The  solution of this equation for the natural frequency of lateral vibration for a 
simply supported beam yields 

i^VAP   V TT^EI 

where 

£     = length of beam,   in. 

u    = natural frequency of lateral vibration of a beam with an axial force, 
rad/sec. 

As can be seen from Equation (92),  the frequency of vibration is  reduced as the axial 
compressive force is increased.     The frequency of vibration is determined by the value 
of the ratio of F Ü   /TT    El,  which is the  ratio of the axial compressive force to the Euler 
critical load.     If the value of this  ratio approaches one,   the frequency of vibration of the 
first mode aporoaches zero,  and lateral buckling of the beam results. 

If the beam is subjected to an axial tensile force,  F,  the natural frequency of 
lateral vibration increases and the value may be obtained by substituting -F for F in 
Equation (92).     This substitution yields 

l1*   AP^ TT
2
EI 

Equations (92) and (93) present the equations for the natural frequency of lateral 
vibration of a simply supported beam subjected to an axial force.     These equations are 
also the equations for the critical speeds of a simply supported shaft subjected to an 
axial force.     The first term in each equation is the first critical speed of a shaft with- 
out an axial force,   as  shown below 

.2 
U = ii:/Ek. (94) 

£Z^  AP 

Substituting Equation (94) into Equation (93) yields 

1  + -Li-   . (95) 
7T2EI 

Dividing both sides of this equation by w yields 

This critical-speed ratio including the effect of the axial force is plotted as the function 
of the axial force to the Euler critical-load ratio in Figure 24.     For axial compressive 
forces,  the critical-speed ratio is less than one,  and for axial tensile forces,  the 
critical-speed ratio is greater than one. 
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The theoretical effect of axial forces upon the  shaft critical speed has been pre- 
sented in a graphical form to assist in the development of a design criteria for high- 
speed power-transmission shafts.     In the development of this criteria the effect of 
axial torque upon shaft critical speed must also be considered. 

Effect of Axial Torque.     The problem of determining the critical speeds of shafts 
subjected to axial torque has been investigated thoroughly in the development of a de- 
sign criteria,   since the primary purpose of the power-transmission shaft is to transmit 
torque.    A search of the technical literature indicated that the problem has been solved 
previously.    Greenhill [Ref.   (7)] solved the related problem of the influence of axial 
torque on the buckling load of an Euler column.    Approximate  solutions of the problem 
based on the work of Greenhill are presented in standard textbooks on strength of ma- 
terials [Ref.   (8),   Ref.   (9)]-     The problem of determining the critical speeds of a rotating 
shaft of uniform cross  section,  which is subjected to an axial torque was  solved by 
Rosenberg [Ref.   (10),  Ref.   (11)]. 

The problem is treated by formulating a differential equation from the equations 
of motion which balance the force components in the two perpendicular planes whose 
intersection is the x-axis and the center line of the undeflected shaft.     Substitution of 
the boundary conditions for  shafts with simply supported ends and fixed ends yields two 
boundary value problems.     The solution of the boundary value problems employs 
elegant mathematical techniques which are interesting,  but will not be presented in this 
report because of the length and complexity of the problem.     This  solution yields 
numerical results for the effect of torque on the critical speed of shafts in simply sup- 
ported and fixed-end bearings. 

This investigation of the theoretical treatment of the influence of axial torque on 
the shaft critical speed indicates that the critical speed always decreases with increas- 
ing torque.     The decrease in critical speed is greater for shafts mounted in simply 
supported or self-aligning bearings than for shafts mounted in rigid bearings.     An addi- 
tional conclusion is that the reduction in critical speed is less for higher critical speeds 
than that for lower speeds.     This information is expressed graphically in Figure 25. 

Figure 25 is a plot of the frequency function,   ß,  versus the torque function, a,  for 
shafts with simply supported ends and fixed ends.     Both of these functions are defined 
in terms of physical dimensions of the  shaft.     As defined in the theoretical work,  the 
frequency function may be expressed as: 

oo^4 

16EI 

where 

E = modulus of elasticity,  lb/in. 

1 = moment of inertia,   in. 

£ - shaft length,   in. 

m = mass per unit length of the beam,   lb-sec   /in. 

p      = frequency function,   dimensionless 

CJ      = frequency,   rad/sec. 
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and the torque function may be expressed as 

a=2L, (98) 
ZE1 

where 

T = axial torque,  in-lb 

a   = torque function,  dimensionless. 

Values for the frequency function and the torque function are represented by the solid 
lines in Figure 25. 

This theoretical work also predicts the existence of a critical torque  with each 
critical vibration mode.     Critical torques are  sufficient to cause instability of the non- 
rotating shaft; i.e. ,   sufficient to reduce the corresponding critical speed to zero.   The 
equation for the critical torque for a shaft with simply supported ends is 

Tk = kyEI' (99) 

where 

T,   = critical axial torque for the kth mode,   Ib-in. 

k     = index corresponding to the mode number. 

Figure 25 shows the torque function a,   = 3. 14 for the first critical torque for a shaft 
with simply supported ends. 

For a shaft mounted in fixed-end bearings,  the equation for the critical torque is 

Tk = ak^|l, (100) 

where 

(X,    = critical torque function for the kth mode,  dimensionless. 

The value of o^   is determined from the following transcendental equation 

tan a,   = a    . (101) 
K        k 

The solution of this equation may be visualized by rewriting it as two equations.     Re- 
writing Equation (101) as 

H = tan ak (102) 

and 

h = a. (103) k 

where H = dimensionless parameter and plotting these equations  results in Figure 26. 
The values of a at the intersections of the two curves are solutions of Equation (101). 
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For the first vibration mode, the torque function, di, equals 4. 495 satisfies Equa- 
tion (101). Figure 25 shows this value of the critical torque for the first mode of a 
shaft mounted in fixed-end bearings. 

Figure 25 is a graphical summary of the solution of the problem of the theoretical 
effect of axial torque on the critical speed of a shaft.     From this figure,   it is concluded 
that a shaft will become unstable at a lower speed as the torque is increased; and that 
a critical torque exists for each vibration mode which is sufficient to cause instability 
of the nonrotating shaft. 

As in all cases of buckling or instability,  it is hecessary to answer the question 
of the range in which this result applies; i. e. ,  find out the region in which the  shaft 
will buckle before it will yield.     Examination of Equations (99) and (100) indicates that 
the critical torque for instability or lateral buckling is directly proportional to the shaft 
diameter and the modulus of elasticity of the shaft material and inversely proportional 
to the shaft length.    The expression for the torque required to yield a circular shaft 
subjected to an axial torque is 

Ty^SgyZ*, (104) 

where 

S       = shear yield stress,   lb/in. sy 

41     .      3 
Z      = polar section modulus = —,  in. 

D 

Substituting the value a*   for the first mode critical torque and equating Equations (100) 
and (104),  rearranging yields 

i E 
— = 4.495   , (105) 
D S sy 

where 

D = outside diameter,   in. 

This equation represents the boundary between the region of lateral buckling and 
yielding of a shaft as a result of the axial torque.     Defining a new quantity 

N=^-, (106) 
bsy 

where 

N = ratio of modulus of elasticity to shear yield stress,   dimensionless 

and substituting Equation (106) into Equation (105) indicates that a shaft will buckle be- 
fore it will yield if 

- > 4. 495 N . (107) 

Figure 27 shows the value of the i/D ratio for various values of N for the inequality of 
Equation (107). 
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If the point for the £/D ratio versus N is above the boundary curve,  the shaft will 
buckle laterally; however,   if the point is below the curve,  the shaft will yield in torsion. 
A curve  separating the two regions is shown in Figure  27 for the  shaft mounted with 
simply supported ends,  as well as for fixed ends.     The information in Figure 2.1 
supplements the information in Figure 25. 

The effect of the axial torque and axial force on the critical speeds of shafts has 
been considered separately.    Since it is impossible to anticipate the type of external 
loads acting on the shaft as a result of the design geometry; i. e. ,   flexible couplings, 
supports^   etc. ,  it is considered essential to present an investigation of the combined 
effect of axial force and axial torque on the critical speed of shafts. 

Effect of Combined Axial Force and Torque.     The general problem of determining 
the critical speeds of a shaft subjected to simultaneous axial force and axial torque has 
been solved by Southwell and Gough [Ref.   (12)].     This theoretical work presents a 
stability criterion for a shaft subjected to a rotational speed,  an axial force,  and an 
axial torque.     The solution of the problem is carried out by writing the equations of 
neutral equilibrium and solving the resulting differential equations by classical mathe- 
matical techniques.     The solution is extremely complicated,  but the authors have made 
the results usable by representing the solution in the form of diagrams.     Figures 28 
and 29 exhibit the stability criteria graphically by means of curves which connect values 
of the frequency factor and the axial force factor for various values of the torque factor. 
The stability criterion for a shaft with simply supported ends is diagrammed in Fig- 
ure 28,   and for a shaft with fixed ends in Figure 29. 

The coordinates of Figures  28 and 29 are nondimensional quantities.     The quan- 
tities A*,  B*,  and Cv relate to the dimensions and material of the shaft and the axial 
torque,  axial force,   and the critical speed,   respectively: 

(108) 

(109) 

A* = 
2EI 

B* = F£2 

4EI 

r* 
m  co2i4 

16E1 
(110) 

where 

A = torque constant,  dimensionless 

E = modulus of elasticity,   lb/in. ^ 

I = section moment of inertia,   in. 

IL = shaft length between supports,  in. 

T = torque,  in-lb 

B = force constant,  dimensionless 

F = force,  lb 

C ^ = frequency constant,  dimensionless 

r^n = mass per unit length of shaft,  Ib-sec^/in. 
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These diagrams illustrating the solution of the problem have been extended to the 
negative B* region.     It should be pointed out that this analysis considers the negative 
B* region as the region of axial tensile force.     Examination of Figures 28 and 29 indi- 
cates that the axial tensile force maintains stability,   i. e. ,  the frequency factor increases 
for a constant torque factor in the negative B* region.     In the positive B* region, 
corresponding to an axial compressive force,   instability will occur at lower rotational 
speeds for a constant torque factor.    Thus the critical speed is  said to be reduced. 
These diagrams indicate that axial force,  axial torque,  and rotation are equally impor- 
tant in causing instability; i. e. ,   reducing the critical speed,  when they act 
simultaneously. 

Figures 28 and 29 may be used to investigate the stability of a shaft subjected to 
a single external load while rotating.     Investigating the stability of a fixed-end shaft 
subjected only to an axial torque means that the value of the axial force factor, 
4B_ ,  must equal zero.    The diagram reduces to points of the frequency factor,   LoC    f 
~2 * ^ 

where the values of the axial torque factor cross the axis at     ^     equal to zero.    A plot 
7T'- 

of these values of frequency factor versus the values of the axial torque factor is shown 
in Figure 30, 

16C* TT^ If the ordinate of Figure 30,  —-=^— ,  is multiplied by — ; and the abscissa of Fig- 

A* ^ 16 
ure  30, ii—.  is multiplied by TT,   and the calculated points are plotted,   a curve is ob- 

7T   ' ' 

tained as shown in Figure 31.     This is a plot of frequency function versus torque func- 
tion showing the effect of axial torque on the critical speed.     Comparison of Figure  31 
and Figure 25 shows good correlation between the calculated curves.     This indicates 
identical results for the effect of axial torque on the critical speeds of shafts based on 
the two theories presented. 

Using the general solution in the graphical form by Southwell,   it is possible to 
prepare a curve for the effect of axial force on the critical speed of a shaft with fixed 
ends.    In Figure 29, the calculated points on the contour of A   /TT equal to zero will 
yield the desired curve.     These results can be transformed into a curve of critical- 
speed ratio versus the axial force constant.     Rearranging the values of ^"C    in terms 

of the critical speed,  and dividing by the expression for critical speed without axial 
force yields the ordinate of the curve as plotted in Figure 32,     Thus Figure 32 is the 
critical-speed ratio including the effect of the axial force versus the axial force constant 
for a shaft with fixed ends,  and Figure 24 is the same  curve for a shaft with simply 
supported ends. 

This section has presented the results of theoretical work on the effects of 
external loads on the shaft critical speeds.     It has been found,  theoretically that an 
axial compressive force and an axial torque reduce the critical speeds.     Each type of 
loading has a critical value which causes lateral buckling; i. e. ,   reduces the critical 
speed to zero.    Axial compressive force and axial torque are equally important in 
causing instability when they act simultaneously. 

Experimental Study of Torque Effects 

The effect of axial torque on the shaft critical speed has been studied in the shaft 
test machine.     Tests were conducted with a steady torque and with a transient torque 
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applied as the shaft was rotating.    In addition the influence of axial torque and of axial 
force was observed with the shaft stationary.     The results of these tests are discussed 
in this  section. 

Data on the effect of torque on the critical speeds of shafts are summarized in 
the following tables.     Table 8 shows the critical speeds obtained in rotational tests for 
the  second and fifth critical speeds for a 1/8-inch-diameter and 1/4-inch-diameter 
shaft.     The deviation of the measured speed and the calculated speed is attributed to 
induced shaft-end tension or compression obtained during setup.     The  1/8-inch-diameter 
shafting was loaded with a torque of 13. 78 in-lb which caused a torsional shearing 
stress of 36,000 psi.     This magnitude of stress is approximately the torsional yield 
strength of the drill rod steel.     The tests were repeated with shorter lengths of 1/8- 
inch-diameter shafting.     These tests showed a very small reduction in the second and 
fifth critical speeds with the application of torque. 

In order to obtain more definite information about the reduction of the critical 
speed caused by axial torque, the tests were repeated using commercial music spring 
wire as the shaft material.    The hardness of this material was Rockwell C 47, which 
corresponds to an approximate yield strength in shear of 92,000 psi.     Tests performed 
with the high strength material are presented in Tables 9 and 10. 

Table 9 lists experiments conducted with constant sag and varied torque.     Tests 9 
and 10 note a negligible difference in measured critical speed with applied torque in- 
creased from 0 to 26. 45 in-lb (sufficient to cause a shearing stress of 69,000 psi in 
the test shaft).     Consequently critical speed appeared insensitive to torque change. 
Since the initial shaft deflection or sag was nominal,  indicating tensile shaft-end forces, 
measured critical speed was higher than that calculated for a shaft without axial force 
or torque  shaft-end effects. 

Experiments   11 and 12,  and 13 and 14 produced negligible change in critical 
speed with change in torque.     There was again,  however,  a difference between the 
measured and calculated critical speeds.     The nominal sag of Tests  11 and  12 produced 
a measured critical speed nearly three times as high as the calculated value.     In Tests 
13 and 14 the shaft was adjusted to be in compression and the measured value was some- 
what lower than calculated for the shaft without applied axial shaft-end force and torque. 
For the shaft in Tests  13 and 14 the adjusted sag of the test shaft was  1. 44 inches 
greater than its natural sag of 3 inches. 

In Tests 15 through 22 the shaft  was adjusted with 1. 6 inches initial deflection — 
equal to the natural sag.     As applied torque was increased beyond the levels of the 
previous  six tests,  measured critical speed increased.     However, with increasing 
torque,  the  shaft became horizontally deformed in an "S" shape —  inducing tensile 
effects at the shaft ends.    At very high torsional stress critical speed dropped perhaps 
caused by axial slip between the shaft ends and the gripping collets. 

In Table  10 tests were conducted with torque held constant,  and with initial 
deflection or sag varied.     The first group beginning with Test 13 and ending with 29 
shows the effect of sag on critical speed -when the shaft was untorqued.    As sag was 
decreased from the beginning value producing shaft-end compression to the value of 
least sag denoting  shaft-end tension,  critical speed changed from a value below to 
considerably higher than calculated for the shaft without axial shaft-end force or torque. 
The  second and third groups of tests in Table 9  showed a similar sensitivity of critical 
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speed to axial shaft-end forces.   From the results of Tables 8 and 9 critical speed is 
quite dependent upon axial shaft-endforces, but is relatively insensitive to torque change. 

Table 11 presents the results of tests conducted to determine the effect of axial 
torque on the natural frequency of lateral vibration for various conditions of critical 
installation and axial force.    Tests 32 through 36 show no significant change in the 
frequency of lateral vibration even though the torque was sufficient to begin yielding the 
shaft.    This test group was performed with an initial mid-point deflection of 1, 67 inch 
and the bearing preload springs undeflected.    In Tests 37 through 42,  conducted with 
the bearing preload springs undeflected,  the natural frequency of vibration did not 
change until the torsional shear stress exceeded the yield strength by a substantial 
amount.   Tests 45 through 48 were conducted with the bearing preload springs deflected 
substantially; i. e. , developing an axial tension,  and showed an increase in natural 
frequency of lateral vibration.     The natural frequency of lateral vibration was reduced 
as the shaft mid-point deflection was increased as shown by Tests 49 through 54. 

Data on the effect of axial torque on the natural frequency of lateral vibration of 
a 1/4-inch-diameter shaft for two distinct installation methods are presented in 
Table 12.    Tests 57 through 64 present the results of natural-frequency tests as torque 
is increasing for the shaft installed with the spindle bearing preload springs undeflected. 
As can be seen no change was observed in the natural frequency of lateral vibration as 
axial torque was applied.    Tests 68 through 75 were to be conducted with the bearing 
preload springs deflected the same amount as in Tests 45 through 48; however, it was 
impossible to install the  1/4-inch-diameter shaft in the same manner as the  1/8-inch- 
diameter shaft.     The stiffness of the  1/4-inch-diameter shaft is 8 times.as large as 
the 1/8-inch-diameter shaft and cannot be subjected to the mid-point deflection and 
the axial force conditions.    These tests show that the natural frequency of lateral vibra- 
tion is reduced as the mid-point deflection increases. 

Additional tests on the transient torque were  conducted along with the testing pro- 
gram of shafts on two supports.    This consisted of testing a damped 1/4-inch-diameter 
shaft 89. 3 inches long with the first support located at 3. 36 per cent of shaft length 
from one end and the second support varied from 10 to 50 per cent of shaft length from 
the opposite end.     The eddy-current brake was energized by interruption of the current 
to excite a transient torque.    This testing was conducted at the second critical speed of 
the longest span, with approximately 3. 6 amperes of current.    In all the tests no change 
was observed in the critical speed or the amplitude of vibration with application of 
transient torques. 

A 1/8-inch-diameter shaft 89. 3 inches long with an axial torque of 40. 4 inch- 
pounds applied developed a large amount of lateral displacement.    Figure 33 shows the 
lateral and mid-point deflection curve of a nonrotating shaft with applied torque.    All 
shafts tested at zero speed which were 89. 3 inches or longer assumed a lateral de- 
flected position similar to Figure 33.    This deflected shape began to occur when the 
applied torque was less than the calculated critical torque.    Shafts with smaller amounts 
of sag developed smaller amounts of lateral displacement.    It was not possible to ob- 
serve lateral instability at rotational speeds. 

It is thus apparent that steady or transient axial torque applied to a shaft installed 
in the shaft test machine does not reduce the critical speed,  or the natural frequency 
of lateral vibration.    Increasing the axial tension reduces the mid-point deflection of 
the shaft and increases the natural frequency of lateral vibration. 
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Comparison of Experimental and 
Theoretical Results 

The  results of the theoretical work to determine the effect of axial torque on shaft 
critical speed were expressed graphically in Figure 25.    Figure 34 repeats the inform- 
ation; the theoretical-torque versus critical-speed functions, a and p,   respectively,  for 
first,   second,  and fifth critical speed of a shaft with built-in ends are shown by dashed 
lines. 

Table  13 summarizes the experimental work conducted to determine torque effect 
upon critical speed.    Values of the frequency and torque functions,  ß and a,  were cal- 
culated for most of the tests in Table  13.     Equations (97) and (98) relate the physical 
dimensions of the test shafts to ß and a; the frequency function,  /S,  is proportional to 
the square of the experimentally observed critical speed and the torque function, a, 
proportional to the experimentally applied torque. 

Following calculation the a and ß functions were entered on Figure 34 to enable a 
graphic comparison of theoretical and experimental torque effects on crilical speed. 
The plotted experimental points were scattered,   so they -were represented as forming 
the double-line envelopes of the figure.     Rather than lower with increased torque as 
theory predicted, the experimental critical speeds increased m value.     Consequently, 
the theoretical and experimental correlation of torque effects upon critical speed -was 
not obtained. 

Experimental observation of the lateral buckling of shafts does verify the 
theoretical results predicted.    The deflected shape of the shaft as shown in Figure 33 
was similar to results presented in Ref,   (7). 

The theoretical effect of increased axial force,  as determined by a reduction in 
mid-point deflection on the critical speed was verified by the experimental work.    Thus 
an axial tensile force increased the natural frequency of lateral vibration. 

Conclusions Regarding Torque Effects 

The major conclusions from this section of the report may be summarized as 
follows: 

(1) Experimental work indicated that both constant and intermittent axial 
torque applied to fixed-end shafts does not reduce the critical speeds 
of shafts. 

(2) Axial tensile force increases the critical speed of rotating shafts. 

(3) Axial torque produces lateral buckling of the stationary shaft as 
predicted theoretically. 
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TABLE 13.   FREQUENCY FUNCTION AND TORQUE FUNCTION FOR SHAFTS TESTED WITH APPLIED TORQUE 

Shall Configuration Point No. Point No. 
Diameier, Length, Frequency Torque Plotted in Frequency Torque Plotted 111 

m. in. Function Function Figure 34 Function Funcuon Figure 34 

1/4 89.3 

Jecond Mode Fifth Mode 

1 215,5 0.204 1 5320. 0.147. 9 
2 1/4 89.3 215.5 0 2 5320. 0 10 

3 1/8 63.2 332. 0.287 3 6170. Ü.225 11 

4 1/8 63.2 287. 1.21 4 5920. 1.21 12 

5 1/8 51.4 347. 0.232 5 5550. 0.182 13 

6 1/8 51.4 335. 0.988 6 5370. 0.988 14 

7 1/8 44.6 299. 0.202 7 5320, 0.158 15 

8 1/8 

1/8 

44.6 

50. 

259. 0.856 

First Mode 

8 5260. 0.856 

Second Mode 

16 

9 70.7 0 -.(a) 439. 0 
10 1/8 50. 68.4 1.84 17 429. 1.675 31 

11 1/8 132. 209. 0 -- 1172. 0 -- 
12 1/8 132. 234. 4.12 18 714. 4.79 32 

13 1/8 110. 251. 0 — -- -- -- 

14 1/8 110. 251. 3.43 19 219. 3.42 33 

15 1/8 89.3 33.4 0 -- 238. 0 -- 
16 1/8 89.3 33,0(b) 2.51 20 -- -- -- 
17 1/8 89.3 38.9(b) 3.43 21 -- ■ - -- 
18 1/8 89.3 42.4(b) 4.36 22 -- -- -- 

19 1/8 89.3 49.0(b) 5.03 23 __ ._ 
20 1/8 89.3 62.6(b) 5.86 24 -- -- -- 
21 1/8 89.3 52.o(b> 6.06 ..(c) -. -- -- 
22 1/8 89.3 30.4(b) 5.86 25 — -- -- 

23 1/8 89.3 31.5 0 __ 240. 0 __ 
24 1/8 89.3 31.5 2.78 26 225. 3.42 34 

25 1/8 89.3 163.8(b) 5.05 27 .. .- -- 
26 1/8 89.3 256.  W 0 -- -- — -- 
27 1/8 89.3 250 0 -. — -. -- 
28 1/8 89.3 233 2.78 28 -- -- -- 

29 1/8 89.3 183 0 .. 854. 0 -- 
30 1/8 89.3 202 2.78 29 881. 3.28 35 

31 1/8 89.3 646    (b) 5.26 30 -- -- -- 

(a) Torque function values of zero are not plotted in Figure 34. 
(b) Frequency function calculated with natural frequency of lateral vibration. 
(c) Value not plotted. 
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Intermediate Support Characteristics Providing Suitable 
High-Speed Shaft Operation 

Numerous experimental shaft tests have been conducted to determine damped 
intermediate support characteristics necessary for high-speed shaft operation.    Earlier 
in the research program before the  "High Speed Shafting Design by Electrical Analogy" 
had been formulated,  suitable damper parameters were sought by trial and error. 
Inasmuch as more data per research dollar could be obtained experimentally,   rather 
than with use of the computer program,   laboratory work comprised most of this phase 
of research. 

Single Damped Support Tests 

A single damped intermediate support was used in the first series of tests to 
determine suitable support parameters.     The damping coefficients and support flexi- 
bilities were established for the first three tests by a simple calculation procedure as 
follows: 

WK Cc = 2^^, (111) 
g 

where 

C    = support critical damping coefficient,  lb-sec/in. 

W   = shaft weight,   lb 

K    = support spring constant,   lb/in. 

A standard steel test shaft size of 0. 25-inch diameter  and 89. 3 inches long had been 
chosen as one which could be easily manipulated in the shaft test machine.     The weight 
of the standard shaft was  1. 260 pounds. The spring rate of the shaft at mid-span with 
no intermediate supports equaled 1. 550 pounds per inch.     Three support spring cons- 
tants were chosen and corresponding damping coefficients were calculated,  with the 
lowest valued spring constant approximately equal to the shaft mid-span spring rate. 

During the test program it was discovered that the actual support damping 
coefficients were equal to about twice the calculated values for the damping fluids used 
in these tests.     The following lists the support spring constants,  K; calculated critical 
damping coefficients,  Cc; and the actual damping values,   C,  used in the first three 
tests: 

K,  lb/in. Cc,  lb-sec/in. C,   lb-sec/in. 

1,33 0. 180 0. 360 
11.6 0. 372 0. 744 
66 0.868 1. 736 

Figures 35,   36,  and 37 show the shaft operating speed range versus intermediate 
support location for the support damping and flexibility values listed above.     For each 
support location in a test series the shaft speed was increased through a rather wide 
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range.    Generally there was a speed range evident through which vibration amplitudes 
were well controlled,  and less then 3/8-inch peak to peak.     For some tests the 
effectiveness of the damped support was sufficient to limit shaft vibration amplitude to 
less than 3/8 inch from zero speed to nearly 8000 rpm,  more than 23 times the first 
critical speed of 340 rpm. 

Examination of Figures 35,   36, and 37 shows the best operating speed range 
(shaft vibration amplitude less the 3/8-inch peak to peak) to be obtained with the  sup- 
port located toward a shaft end.    Consequently further test series were made with the 
support in the region between 2. 24 and 11.2 per cent of shaft length from the shaft end. 
To find a better combination of support flexibility and damping to permit a wide shaft 
operating speed range,  various combinations of K and C values were  chosen for 
testing.        Figures 38 through 42 show plots of operating speed range versus support 
location for various support damping and flexibility values. 

The best support situation is shown in Figure 39.     With the support located at 
5. 05 per cent of shaft length from one end,  damper vibration control allowed satisfac- 
tory shaft operation from zero speed to 22,000 rpm.     This corresponds approximately 
to the twelfth critical speed of an unsupported shaft.     Moving the support to 3. 36 per 
cent of shaft length from one end increased the satisfactory top speed to 26,000 rpm, 
but with diminished low-speed vibration control.     Damper characteristics in this test 
series were K = 11. 6 lb/in.   and C = 1. 736 lb-sec/in. 

Thinking that such successful shaft vibration control as achieved with one damper 
might yet be improved,  a series of tests were scheduled with two damped intermediate 
supports. 

Tests With Two Damped Supports 

Two Damped Supports Symmetrically Located.     Since excellent high-speed shaft 
operation was obtained with one damper located close to a shaft end,  four tests were 
made with two dampers located symmetrically near each shaft end.     Damper param- 
eters were as before in the best single support test series,  with K =  11. 6 lb/in.   and 
C = 1. 736 lb-sec/in.    As before to limit extreme amplitude,  and to signal 3/8-inch 
peak-to-peak vibration,   5/8-inch-diameter shaft guards were used. 

In two or three preliminary runs with the two symmetrically located supports, 
shaft operation seemed extremely violent and noisy.     For this reason,  in the   four 
series of tests shaft speed was brought up rather quickly and data were consequently 
less complete than with the single support tests. 

In Test  1 with dampers located at 2. 24 per cent of the shaft length from each end, 
vibration amplitude equal to 3/8-inch peak-to-peak occurred somewhere over 20,000 
rpm.    Then at 31,000 rpm vibration was so violent that one of the flexure plates was 
broken. 

In Test 2 with parts renewed and dampers at 3. 36 per cent from each end, 
vibration was mild until 28,000 rpm.    At this  speed damper parts were loosened by 
extreme vibration. 
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In Test 3 with all parts retightened and dampers at  5. 05 per cent from each end 
a speed of 34,000 rpm was attained.     There were two critical speeds below 34,000 rpm 
that produced vibration amplitude equal to 3/8-inch peak to peak but the speeds were not 
recorded.    At 34,000 rpm vibration was sufficient to loosen damper parts and to cause 
a permanent set in the shaft. 

After replacing the shaft and retightening parts in Test 4,   operation to  18,000 rpm 
was attained with dampers located at 6. 72 per cent from each end.    As the upper limit- 
ing speed of the operating speed range was seen to be decreasing another two-support 
test was  scheduled. 

Two Damped Supports — One Fixed and the Other Variably Positioned.     Since 
previous tests had indicated the 3. 36 per cent support location to be a good compromise 
between low- and high-speed vibration control,   a series of tests was  conducted with one 
damper fixed at this position.     The other damper was variably positioned,   starting 
near the other shaft end and moving toward the  shaft mid-point as testing progressed. 
Support damping and spring  rate were as before; C = 1. 736 lb-sec/in.   and K =  11. 6 
lb/in.     Use of the 5/8-inch-diameter shaft guards was continued. 

Figure 43 shows the resulting operating speed range obtained as the movable 
damper was  repositioned in small increments from the shaft end toward mid-span.   The 
largest operating  speed range was obtained with both supports  located symmetrically at 
3. 36 per cent of shaft length from the shaft ends.    At this  location there were no 
amplitudes as large as  3/8-inch peak to peak until 28,000 rpm was reached.     However, 
in the varied support location region between zero and 8. 95 per cent,   vibration at the 
highest operating  speeds was sufficient to loosen damper parts three times and to de- 
form the test shaft permanently twice.     To avoid these difficulties,   1/2-inch bushings 
were inserted in the shaft guards to reduce peak-to-peak amplitude from 3/8 to  1/4 
inch.    Subsequent testing of varied support location in the  region from 10 to 50 per cent 
of shaft length from the end was  conducted with these  1/2-inch-diameter shaft guards, 
and the highest-speed shaft vibrations were more effectively limited.     Loosening of 
parts and permanent deformation of test shafts was eliminated. 

It is interesting to note from Figure 43 that location of one support close to a 
shaft end with another very close to the shaft mid-point produces an excellent operating 
speed range.    Although low-speed vibration control is diminished,  both the lower and 
upper limits defining the operating  speed range envelope ar ; rather flat with respect 
to the location of the varied support.    Speed range is not so sensitive to  slight changes 
in support location. 

Up to this point in the test program, no extensive experimental work had been 
accomplished with two supports both varied with each test.    A geometric relationship 
describing positions of the two damped supports with a single number was devised, 
which enabled still another two-support test to be scheduled. 

Two Damped Supports — Both Variably Positioned.     Figure 44 shows a curve 
which denotes the position of each of two intermediate supports with one  number,  k. 
For any value of k there is but one position of each support along the test shaft length. 
For instance at k ^ 1,  two supports were located such that the three spans between shaft 
ends and dampers were of equal length.    At k = 0.5,  the smallest span was one-half tue 
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middle-sized span, and the middle-sized span one-half the length of the longest span. 
The series of tests shown in Figure 44 was made with supports spaced to position the 
longest span in the center,  with the shorter spans adjacent to the shaft ends. 

Damping in this test series was reduced to 0. 736 lb-sec/in. , but support flexi- 
bility remained at  11.6 lb/in.   Use of the  1/2-inch diameter shaft guards was continued. 
Figure 45 shows that the greatest operating  speed range occurred at k = 0. 2 with the 
two supports close to the shaft ends.    A maximum speed of 17,500 rpm was reached 
before peak-to-peak, vibration amplitude reached 1/4 inch. 

For comparative purposes damper locations can be calculated easily from Fig- 
ure 44.     From the figure,  at k = 0. 2,   Üi/L.= 80. 7 per cent of the total shaft length.   The 
longer end span equals 0. 2 times the length of the longest span or  16. 08 per cent of 
shaft length from one end.     The shortest span at the other shaft and equals 0. 2 squared 
times the longest span or 3. 21 per cent of total shaft length. 

Referring to the test of Figure 43 we can see a similar distribution of supports 
with one located at 3. 36 per cent and the other at  15. 7 or  17. 9 per cent of shaft length 
from the other end.    All shaft dimensions,   support locations,  and parameters of the 
test in which k = 0. 2 are similar, with the exception of damping.    Damping equal to 
1. 736 lb-sec/in.   controlled shaft speed to approximately 21,750 rpm, while the smaller 
damping value of 0. 744 lb-sec/in.   used in the test with k = 0. 2 permitted operation to 
just  17,500 rpm.     Low-speed operation was the same in both cases.     The conclusion 
may be drawn that with two dampers,   each located close to a shaft end,  vibration will 
be better controlled at higher speeds with the higher support damping value. 

Tests With Three Damped Supports 

Three Damped Supports — All Variably Positioned.    It was also desired to evaluate 
use of three variably positioned dampers.     A series of tests was conducted with the 
same support parameters as used in the variably positioned two-support test series. 
Figure 44 shows the relation of span lengths to one another with respect to the value k, 
and also the span position along the shaft.     Span orientation begins with the shortest 
adjacent to one shaft end, then the next to the longest,  the longest,  and the next to the 
shortest at the other shaft end. 

Figure 46 shows test results of this series.    Contrary to the similar series with 
two dampers,  all low critical speeds are sufficiently controlled by three dampers to 
limit vibration amplitude to less than 1/4 inch peak to peak.    However,  peak operating 
speed reached only 13,600 rpm at k = 0. 5. 

Since project emphasis has been toward developing ultrahigh-speed shaft sup- 
port data,   investigation with three variably positioned dampers was discontinued.   Pre- 
vious tests have shown two dampers,   and even a single damped intermediate support to 
provide better shaft vibration control at the higher speeds. 
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FIGURE 46.    SHAFT SPEED VERSUS SUPPORT LOCATION WITH THREE 
VARIABLY POSITIONED DAMPED SUPPORTS FOR 1/4- 
INCH-DIAMETER STEEL SHAFT 89. 3 INCHES LONG WITH 
FIXED ENDS (SUPPORT CHARACTERISTICS:   K = 11. 6 
LB/IN. j C = 0. 744 LB-SEC/ IN. ) 

Three Damped Supports — Stefano'B Spacing.    Early in the research program a 
Fairchild Aircraft Report by N.  M.  Stefano [Ref.  (13)] was brought to our attention. 
The report discussed positioning of three damped intermediate supports to provide 
adequate vibration control through the first 300-plus critical speeds. "Stefano's posi- 
tioning of intermediate supports calls for placement at 1/5, 4/9, and 4/7of shaft length, 
all measured from the same shaft end. 

The reference however, did not indicate what Intermediate support flexibilities 
or damping values were required, and so the same values as indicated in Figure 35 
were used:   K = 1. 33 lb/in.  and C = 0. 360 lb-sec/in.    Shaft guards with 5/8-inch- 
diameter holes were used to contain the 1/4-inch-diameter test shaft. 

When the test was run, high-speed vibration controlwas adequate only to 7250 rpm, 
at which point vibration amplitude equalled 3/8 inch peak to peak.    This speed is be- 
tween the sixth and seventh criticals for the shaft without intermediate supports.  Since 
better operation was possible with just one damped support (see Figures 35 through 42), 
no further tests were made with this three-support orientation. 

It is only fair to say that there very well may be a more suitable combination of 
support bearing weights in relation to shaft weight,  support flexibility,  and damping 
coefficients which would permit operation to a much higher speed than 7250 ppm.   How- 
ever, it was considered more in keeping with the research program objectives to strive 
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for high-speed shaft operation with a mimimum weight penalty imposed by the number 
of dampers required. 

Experiment Wiih Shaft Be    ivior Predicted 
by Electrical Analogy 

Late in the research program a method of predicting  shaft behavior was developed 
by application of modified electrical transmission line theory.     Details of the theory 
are explained in the section entitled,  High Speed Shafting Design by Electrical Analogy. 

A laboratory experiment was set up using shaft and support parameter s calculated 
by the analogy,    it was predicted that two dampers  spaced along a steel shaft of 1/2-inch 
diameter and  138 inches in length would successfully control vibration amplitudes 
through the first eight critical speeds of the  same  shaft with no supports.    At the ninth 
critical speed operation would become unsuitable. 

One damper was located 30-15/32 inches from one end,   equipped with a spring 
constant of 120 lb/in. ,  and a damping coefficient of 1. 7 lb-sec/in.     The second damper 
was positioned 44-29/32 inches from the other shaft end.    Its damping factor was ad- 
justed to  1.2 lb-sec/in. ,  and the spring  rate used was negligible. 

The experiment showed what was predicted.     The first eight critical speeds were 
well controlled with the seventh and eighth extremely  smooth running.     At the ninth 
critical speed shaft operation became so noisy that there was  considerable doubt that 
the test machine would remain intact.    However,   Mr,   Bruce Brooks of the Sponsoring 
Agency directed that speed be increased, with the   final result that a maximum speed of 
45,500 rpm was attained.    Although there were shaft operating speeds above the ninth 
critical which produced a disturbing noise,  there were also wide  ranges in speed over 
which operation was very smooth.     We are confident that the methods of damper selec- 
tion provided by the electrical analogy produce an important new insight for predicting 
high-speed shaft operation. 

Conclusions 

Numerous experiments have shown that transmission shafts  can be operated 
dependably at and above their first critical speeds.    Although tests were conducted with 
a standard steel shaft size of 1/4-inch diameter 89. 3 inches long,  the modeling pro- 
cedure explained previously permits similar operation to be obtained with any other 
shaft size and length. 

In the single-damped-support tests best operation was obtained with the damper 
located close to one shaft end.     Figure  39  shows the best of the single-damped-support 
test series.     Damper parameters are:    K =  11.6 lb/in. ,  and C =  1.736 lb-sec/in.    At 
a damper position 5. 05 per cent of shaft length from one end,   operation to 22,000 rpm 
was achieved before the vibration double amplitude reached 3/8 inch. 

In the two-support tests highest speed operation was again attained with supports 
located toward each shaft end.    However,  during some tests vibration was  so violent that 
in two cases  shafts were bent.    More dependable operation was obtained with one  sup- 
port close to a shaft end and the other near mid-span as indicated in Figure 43.     A 
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noteworthy feature of this arrangement is that vibration amplitude control is not partic- 
ularly sensitive to location of the center support.     With one support located at 3. 36 per 
cent of shaft length and the   other positioned between 42 and 49 per cent from the other 
shaft end,  double amplitudes were limited to less than 1/4 inch from approximately 
2000 to 25,000 rpm.    Damping values and spring rates were the same as used in the 
best single-support test:   K = 11. 6 lb/in.   and C = 1. 736 lb-sec/in. 

Another two-support test conducted with the same support flexibility,  K,  but with 
43 per cent as much damping showed the similar trend of best attainable operating speed 
range  with dampers set close to each end.    However,  the highest operating  speed was 
just 17,500 rpm.     The conclusion to be reached here is that damping was not sufficiently 
high to provide best operation. 

All of the three support tests showed decreasing ability to control vibration at 
high speeds.    All,  however,   controlled low-speed amplitudes well enough.     There 
seemed no advantage to continued three-support investigation,   since single-support 
tests successfully controlled vibration amplitudes at higher speeds. 

With the advent of high-speed shafting design by electrical analogy,  experimenta- 
tion will be called upon during the second-phase research program to corroborate pre- 
dicted high-speed shaft operation,   rather than to generate support parameter data for 
high-speed model shafts,    A 1/2-inch-diameter,   1 38-inch-long  steel shaft with two 
damped supports was predicted by the analogy to perform well through its first eight 
critical speeds,  but to operate poorly at the ninth.    Experiment has shown the predicted 
operation to be correct.    Using the newly developed design procedure it is expected 
that superior damped supports can be designed for any high-speed shaft without   scaling 
values from previous experiments. 

Effect of Continuous Damping on High-Speed Shaft Operation 

A method of providing suitable hypercritical-speed shaft operation by using a 
continuous damping coating applied to the length of a shaft was  suggested in the research 
program proposal.    This section deals with the investigation of coatings and their 
effect upon shaft behavior. 

The  requirements of a suitable continuous viscous damping  coating are that it be 
able to absorb and dissipate a large quantity of vibration energy,  and that its bonding 
strength to the shaft be great.     For viscoelastic materials the measure of area within 
the hysteresis loop indicates the energy-dissipation qualities.     Due to the tendency of 
externally applied coatings to separate from the  shaft surface at high speed,  a good 
bond between shaft and coating either by an adhesive or by "shrink fit" is essential, 
Viscoelastic coatings used on the  shaft surface absorb energy by changing shape as the 
shaft surface fibers stretch and compress.    Viscous damping of shaft vibrations using 
viscoelastic coatings forms a major part of the evaluation of continuously damped shaft 
behavior. 

Coulomb damping provides another means of absorbing the energy of vibrating 
shafts.    Hollow turbine blades have been damped by bundles of wires placed longitudi- 
nally inside the blades [Ref.   (14)].    A similar arrangement was investigated for damping 
tubular shafts.    In a discussion concerning damping materials,  use of a woven steel 
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mesh fitting the  shaft surface closely was  suggested [Ref,   (15)J.    As the outside or in- 
side surface fibers of the vibrating  shaft change length,  the friction of the steel wires 
or mesh sliding on the shaft surface would cause energy dissipation. 

A two-part evaluation was made of both coulomb and viscous damping methods. 
A large number of coatings were first tested on nonrotating shafts which were vibrated 
laterally.     Then the more promising coatings were applied to shafts for rotational tests 
in the shaft test machine. 

Nonrotational Continuous- Damping Evaluation 

Information concerning  suitable damping coatings was obtained from various 
sources.    Battelle's Rubber and Plastics  Division was consulted,  as was a coatings 
manufacturer,  and a technical publication [Ref.   (16)].    Quite a few coatings were sug- 
gested,  and,  to reduce the number of rotational tests necessary for actual coating 
evaluation,  a nonrotating test procedure was devised. 

Figure 47 shows a schematic diagram of the nonrotational test apparatus.   Coated 
shaft samples were clamped at their centers to the moving element of an electrodynamic 
shaker.    A variable-frequency alternating-current source supplied energy to power 
the shaker so that the cantilevered test samples  could be vibrated at their natural 
frequencies.    Table  14 indexes the details of the coatings and how they were applied to 
test shafts.     Table  15 shows a tabulation of the relative merit of the damping coatings. 

The effectiveness of continuous damping on nonrotational lateral vibration was 
determined by calculating the amplitude ratio of free-end vibration,  y,  to shaker vibra- 
tion,  y   .     The ratio is called amplification or amplification factor.    For all tests the 
vibration amplitudes were noted at the test-shaft natural frequency, which varied some- 
what due to the different weights of the  coatings.     Table  15 shows for the calibration 
tests of bare shafts that amplification factors  range between 134 and 200,     Tests 4 
through 20 indicate amplification from 6.4 to   ) 59 for the continuously coated shafts. 
The lower the amplification the better the damping characteristics of the shaft coating. 
The best coating was produced by winding  rubber tape on the shaft surface.     However, 
near the end of this test the free-end amplitude of vibration began to increase,  indica- 
ting a reduction in damping after absorbing a large amount of energy.     This was 
probably caused by an increase in temperature of the coating,  which started its separa- 
tion from the shaft.    In the next best test,  a tubular shaft filled with wires,  the prob- 
lems associated with temperature increase did not occur and free-end amplitude did not 
change. 

The results show that amplitude reduction of continuously damped shaft samples 
is quite apparent in some cases. The four most promising continuously damped shaft 
configurations were chosen for rotational tests,  which will be described now. 

Rotational Continuous-Damping Evaluation 

The four most promising damping coatings as shown by nonrotational testing 
were chosen for evaluation in the  shaft test machine.    All coatings were applied to  1/4- 
inch-diameter by 89. 3-inch-long steel shafts.     The fourth test used a tube of these 
dimensions with a wall thickness of 0. 035 inch.     Details of the  coatings are  shown in 
Table   14 and refer to Tests   10,   6,   5,  and  15 of that table. 
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TABLE  14.    SHAFT COATINGS TESTED 

Xest Description of Shaft Preparation 

1 No coating — calibration 

2 No coating — calibration 

3 No coating — calibration 

4 Latex gum rubber (1/4-in.   ID x  1/16-in. -thick wall) bonded to shaft with epoxy 
resin (Woodhill Chemical Co.); shaft coated with rubber tube along entire 
length 

5 Latex gum rubber,  etc. ,   same as Test 4 

6 Tygon — plasticized vinyl  (1/4-in.   ID x 1 / 16-in.-thick wall) bonded to shaft with 
epoxy resin (Woodhill Chemical Co.) 

7 Polyolefin shrinkable tubing — FIT 275-4; shaft clamped with tubing along entire 
length 

8 Polyolefin shrinkable tubing - FIT 275-4 

9 3M Tape Adhesive No.   466 — wrapped around shaft in helix 

10 P & R Splicing Compound No.   8 —  3/4 in.   wide x  1/16 in.   thick wrapped around 
shaft in helix,  with 1/2-width overlap (electrical tape) 

11 Shielding and bonding cable — Belden's No.   8663 —  160 wires x 34 gage  (wire 
mesh)  soldered to shaft at ends 

12 Shielding and bonding cable,   etc. ,   same as Test  11 Pliobond adhesive allowed 
to fill wire interstices 

13 No coating   -   1/4-in.   OD x 0. 035-in.-thick wall,   seamless,   cold-drawn 
mechanical tubing 

14 1/4-in. -OD x 0. 035-in. -thick-wall tubing with  1/8-in. -diameter  shaft cemented 
in place with Pro-Seal 890-B2 

15 1 /4-in. -OD x 0. 035-in. -thick-wall tubing filled with 46 steel wires  (0. 022-in. - 
diameter) 

16 Wire {0. 033-in.   diameter) wound on outside diameter — closely wound 

17 Wire wound — same as Test 16 

18 Wire (0. 024-in.   diameter) wound on outside diameter — closely wound 

19 Wire  (0. 033-in.   diameter) wound on outside diameter — open wind — one wire 
diameter between coils 

20 Wire  (0. 024-in.   diameter) wound on outside diameter — open wind — one wire 
diameter between coils 

Note:   All shafts are 1/4-in. diameter x 12 in. long, and coatings cover entire length of shaft only unless otherwise indicated. 
Wires were wound separate from the shaft and then assembled. 
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TABLE  15.    TABULAR RESULTS OF SHAFT COATINGS TESTED TO DETERMINE 
EFFECTIVENESS OF DAMPING 

Ys y 
Amplitude Amplitude of 

of Vibration Vibration at Natural Amplification, 
of Shaker, Free End, Frequency, y 

Test in. in. cpm Vs 

1 0.014 1.812 2880 134. 
2 0.005 1. 00 2880 200. 
3 0.0125 1.75 2760 140. 
4 0.016 0.875 2630 54.6 
5 0.014 0. 938 2720 65.5 
6 0.025 1.625 2580 63.7 
7 0. 013 0.75 2760 59. 
8 0.015 0. 938 2700 62.6 
9 0. 014 1.625 2820 116. 

10 0.271 1.75 2520 6.4 
11 0.011 1.625 2700 159. 
12 0.018 1.625 2720 90. 
13 0.005 0.75 3360 140. 
14 0. 012 0.875 2700 72.9 
15 0. 011 0,25 2700 22.8 
16 0.0148 0.3125 2330 21.2 
17 0.0344 1.625 2330 47. 3 
18 0.0143 1. 500 2400 105. 
19 0.0138 1. 500 2490 109. 
20 0.0136 1. 1875 2520 138. 
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Some difficulty was encountered in preparing the Number   15 rotational test  speci- 
men; the tube filled with many small-diameter wires.     The wires were cut to shaft 
length from a coil.    During installation of the wires in the tubing,  they attempted to 
assume the coiled shape and align themselves in the same direction.     This  resulted in 
a curved tube which was not suitable for rotational test.    A 3/16-inch-diameter length 
of sash cable was  substituted for the   individual wires,   and the tendency toward tube- 
curvature was eliminated,     A nonrotational test was the made of this substitution for 
the Test  15 specimen,   resulting in an amplification factor of 46. 8, 

Table  16 shows results of the rotational tests.    Tests were run to the second or 
third critical without intermediate supports.     Table  16 shows the speed range for the 
four prepared shafts.    The term speed range is used to indicate the difference between 
the speeds at which large amplitudes of vibration were first noted as the shaft speed 
was increased,   and as the  shaft speed was decreased through the given vibration mode. 
For comparison,  the speed range of large amplitudes of vibration for an uncoated shaft 
is presented in the same table. 

The shafts coated with P  & R splicing compound and latex gum rubber showed 
the best improvement in the operating  speed range.     This is indicated by the small 
difference in speed at which the large amplitudes of vibration began when increasing 
and decreasing speed. 

The Tygon-coated shaft showed a lesser degree of vibration improvement than 
the two best shafts.     The tube filled with sash cable proved to be a disappointment,   al- 
though its nonrotational rating was better than either the Tygon-  or gum-rubber coated 
shafts.     The  rotational behavior of the  sash-cable-filled tube was very similar to the 
bare calibration shaft listed first in Table  16. 

In comparing damping of filled tubes and viscoelastic coatings,   consideration 
should be given to the change in exciting force as well as damping ability.    Filling a 
tubular shaft with steel sash cable probably introduces more mass unbalance than 
coating a shaft with a thin layer of viscoelastic material.    Although the filled tubu.lir 
shaft may be just as effective percentagewise,  in reducing the vibration amplitudes,   the 
larger mass unbalance causes it to appear to be less effective. 

Consideration must also be given to a basic difference between the preliminary 
shaker tests and the rotating tests of continuously damped shafts.    In the shakertests 
there is a cyclic change  in shaft fiber length,   which causes  energy dibsipation by 
alternately stretching and compressing the damping materials.     In shafts rotating at 
their critical speeds,  for the most part there is no cyclic change in shaft fiber length, 
if the shaft is supported symmetrically at its ends.    Consequently,  in rotating tests, 
the improvement in operation of continuously damped shafts over uncoated shafts was 
minor. 

Conclusions 

Limited expe riniental testing of continuous   shaft damping has shown some effective 
ness in reducing the  speed range of large amplitudes of vibration for the lower critical 
speeds.    Operation at the higher critical speeds was.  however,  totally unsatisfactory. 
Damping provided by shaft coatings or fillings  cannot,   therefore,  be recommended. 
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TABLE  16.    RESULTS OF COATINGS TESTED ON  1/4-INCH-DIAMETER 
SHAFTS 89. 3 INCHES LONG WITH NO INTERMEDIATE SUPPORTS 

Speed Range of Large 
Amplitude of Vibration,  rpm  

First Second Third 
Shaft Coating Mode Mode Mode 

Uncoated shaft 275-400 850-950 1725-1825 

Tygon tubing (plasticized vinyl) 
bonded to shaft 300-325 850-875 1650-1700 

P & R  splicing compound 
(electrical tape) wound 
around shaft 300-300 850-875 1700-1700 

Latex gum rubber bonded 
to the shaft 300-300 850-860 1700-   -- 

1 /4-in   -OD x 0. 035-in. -thick 
wall tube with 3/16-in. -diameter 
steel sash cable 300-425 900-1025 
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Equipment and Calculations 

Shaft Test Machine 

General Description.    In order to obtain useful information concerning 
hypercritical-speed power-transmission shaft operation it was necessary to design and 
build a shaft test machine.    Since testing of full-scale transmission shafts would have 
involved excessive cost it was decided at the outset of the program to conduct tests 
with reduced-scale shafts and to incorporate a modeling procedure to relate informa- 
tion of reduced-scale tests to full-sized shafts. 

Figure 48 shows a photograph of the entire test machine.    ^Figure 49 is a 
schematic diagram of the test machine bed and equipment.    Essentially the test machine 
consists of a straight bed to hold the spindle assemblies at the   ends and the inter- 
mediate shaft support bearings,  and an electronically governed variable-speed drive to 
rotate the shafts.     The test bed is capable of accepting commercially available shafts 
12 feet in length,  and the spindles and intermediate support assemblies,  accept shaft 
diameters  1/2 inch and smaller.     The support assemblies are  designed to provide 
adjustment of damping and spring rate with the least possible difficulty.    Intermediate 
supports and the brake-head spindle assembly can be moved and clamped to the test bed 
at desired distances from the drive-head spindle assembly.    Guards which limit test 
shaft amplitude can also be clamped at desired distances along the test bed.     The brake- 
head assembly is capable of applying torque to the test shaft.     The drive-head assembly 
rotates the test shaft at various speeds,  and   is belt driven from the variable-speed 
drive mechanism.    Also at the drive-head assembly is a stroboscope actuator which 
permits observation of the test shaft by stroboscope either once or twice per shaft 
revolution. 

Figure 50 is a schematic diagram of the test-machine drive mechanism.     Two 
7-1/2-horsepower motors power two eddy-current clutches.    The clutches transmit 
power to a common shaft.    Power is transmitted by belt to a speed-change mechanism 
consisting of two pulley assemblies,  and from there to the drive-head assembly.    By 
varying clutch output-speed and by changing speed ratio in the two pulley assemblies, 
drive-head spindle speed may be varied from zero to nearly 50,000 rpm with consider- 
able horsepower available at the drive-head spindle.     The highest speed achieved to 
date with an experimental shaft is 45,500 rpm. 

Test shaft spindle  speed is  regulated by controlling eddy-current clutch excitation. 
The control box which mounts a direct reading tachometer and a potentiometer to 
change shaft speed may be carried by the operator to any position along the test bed. 
Because of the varying power requirements of test shafts as they are brought up 
through critical speeds,  an electronic speed governor is incorporated in the speed- 
control system to maintain selected operating speeds with negligible drift. 

Description of Test Bed and Equipment.     The test bed consists of a 15-foot-long 
welded structural steel base with supports at each end.     The supports of the bed are 
firmly bolted to an isolation pad in the laboratory.    Pads welded to the top of the bed 
were machined in-line and four lathe beds were aligned,  leveled,   and bolted to the pads. 
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In effect this forms an extremely rigid  14-foot-long lathe bed with a 12-inch swing. 
The precision alignment of the individual lathe beds to each other permits the drivi'- 
and brake-head spindles to remain in-line no matter what position the brake head 
occupies.     Likewise the intermediate supports are always in alignment with the spindle 
axes. 

The drive-head and brake-head-assemblies consist of reworked lathe spindles 
mounted to rigid bearing housings.     The spindles are mounted in Barden angular-contact 
bearings,  which are lightly preloaded to insure proper bearing life.    Both spindles 
have a built-in capacity to move axially,   since the ball-bearing outer  races are a slip- 
fit in the bearing housings.    In the drive head, however,  the flat belt which transmits 
power to the drive spindle creates a large friction force at the bearing-to-bearing 
housing interface.    Effectively there is no axial spindle travel at the drive head for this 
reason.     Travel is allowed at the brake-head spindle,  and the axial spring rate is 
plotted in a curve and shown in Appendix A. 

The brake-head assembly is equipped as an eddy-current brake  so that torque 
can be applied to the rotating test shafts.    A 3-5/8-inc:h-diameter high-strength steel 
rotor is attached to the brake-head spindle.    A fractional-horsepower electric motor 
stator is bolted to the brake-head bearing housing so that its axis is concentric with 
the rotor.    Application of direct current from a storage battery to the  stator windings 
produces a braking torque in the test shaft.    A curve showing torque versus spindle 
speed is included in Appendix A. 

Both drive- and brake-head spindles are hollow and machined to the same inside 
diameters.    The method of gripping the tests shafts is  similar to that used in lathe 
operation.     Lathe collets,   collet chucks,  and draw-in tubes were used for test-shaft 
sizes up through 1/4-inch diameter.    For 1/2-inch-diamete r test shafts  specially de- 
signed collets were machined,   since the spindle bores were too small to accommodate 
standard draw-in tubes and collets. 

Attached to the drive-head assembly are the stroboscope actuator and the tacho- 
meter generator.    Figure 51 is a schematic diagram of the actuator.     Fastened to one 
end of the spindle is a disk with an interruption at one location on its periphery.     Con- 
centric with the disk is a ring to which two magnetic pickups are mounted,   180 degrees 
from each other.    As the  slot in the   disk passes a pickup,  the magnetic field of the 
pickup is distrubed sufficiently that,  with the aid of an amplifier,  the  stroboscope is 
triggered by the pulse, ,  Use of both pickups permits observation of the lateral vibra- 
tion "envelope".    By rotating the pickup ring the shaft can be inspected at any angular 
orientation. 

Figure 50 shows the location of the tachometer generator which is driven from the 
inboard end of the drive-head spindle.    The tachometer drive uses narrow,  flat,  high- 
speed belts and incorporates a speed reduction from the spindle to the tachometer 
generator of either 5:1 or 25:1.     The output of the generator is fed to a speed-indicating 
voltmeter in the control box,   and to the electronic speed governor where it serves as 
the feedback voltage.    Since most of the running has been in the high-speed range,  the 
higher ratio of speed reduction has been used almost exclusively. 

Figure 52 is a photograph and Figure 53 is a schematic diagram of the inter- 
mediate support damper.    Figure 52 also shows the shaft guards which will be described 
later.     The intermediate support consists of two heavy square plates,  one of which is 

123 



Ml 
0. 

2 

§ 

s 
H 
U 
<; 
w 
o 

o 
PQ 
O 
« 
H 
to 

in 

W 

B 

124 



N86382 

FIGURE 5 2.     PHOTOGRAPH OF INTERMEDIATE SUPPORT DAMPER 
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FIGURE 53.    SCHEMATIC DIAGRAM OF INTERMEDIATE SUPPORT DAMPER 
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bolted to a lathe steady-rest.     The plates are bolted together parallel to each other with 
ground spacers between them to provide the necessary oil-film thickness for support 
damping.    An 0. 018-inch-thick flexure plate,  which mounts the support bearing,   is 
sandwiched between the heavy outer plates.     By filling the gap between the outer plates 
and flexure plate with a damping fluid such as oil and clamping the test shaft in the 
support bearing bore,  viscous damping forces are generated when the vibrating  shaft 
causes the damper assembly to move.     The damping factor may be changed by inserting 
spacers of different thickness to alter the clearance between the outer plates and 
flexure plate.     Likewise the damping factor may be changed by using damping fluids of 
different viscosities.    A curve  showing the difference of calculated to actual values of 
damping factor is included in the Appendix A. 

The flexure plate to which the  support bearing is fastened is  laterally supported 
at its four corners by four springs.    Adjusting the lateral flexibility of the support can 
be done by either changing to springs of a different spring rate or by changing the 
number of active coils of the springs by changing the point at which the  springs  are 
clamped. 

Four circumferential slots have been cut in the flexure plate at a slightly larger 
diameter than the support bearing fastening.     The  slots  reduce the bending stiffness of 
the flexure plate to minimize its  effect on shaft behavior.     Tests  show that the  inter- 
mediate support does not act strictly as a simple  support,  but has  some moment- 
absorbing ability.     The initial angular motion of the bearing is practically free  from 
moment restraint due to the built-in radial clearance in the Barden support bearings. 
After the free motion is taken up in the bearing,   moment  restraint increased due to 
bending of the flexure plate.     A curve of the intermediate support moment  restraint is 
given in Appendix A. 

The intermediate support assemblies are mounted on lathe steady-rests.     The 
bottom of each steady-rest has a tongue which fits closely between the ways oi the lathe 
beds.     The close fit assures that the intermediate support bearing axis be parallel to 
the spindle axis. 

Figure 52 is a photograph showing the guards used when testing high-speed shaft- 
ing.     L-shaped brackets were made which clamp to the lathe bed ways.     Cast-iron 
pillow blocks are bolted to the vertical portion of the brackets.     The pillow-block bolt- 
holes are oversized so the blocks  can be aligned to follow the natural sag of test 
shafts.     The pillow blocks are  split and held together with screws.     This feature per- 
mits installation or removal of guards without withdrawing the test shaft. 

Description of Test-Machine Drive Mechanism.     Figure 48 shown earlier,   and 
Figure 54 show two views of the test-machine drive mechanism.     A common shaft 
carries the combined output of two eddy-current clutches,   each of which is driven by 
a 7-1 / 2-horsepower  1750-rpm electric motor.    Each motor and clutch assembly de- 
velops approximately one-half of the needed power at any given time.     Power is trans- 
mitted from the  common clutch output shaft to the low-speed pulley assembly by means 
of a fixed-ratio gear belt and pulleys.     The low-speed pulley assembly is  composed of 
a 2-inch-diameter  shaft with three flat-belt pulleys pressed on one  end and the  gear- 
belt pulley on the other.    Adjacent to the low-speed pulley assembly is the high-speed 
pulley assembly.    Its cone-pulley assembly is integrally machined with the shaft.     The 
cone-pulley diameters on both shafts range from 2 to 6 inches,  providing a total speed 
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FIGURE 54.    PHOTOGRAPH OF TEST-MACHINE DRIVE MECHANISM 
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ratio change of approximately 9:1.    Power is transmitted from the high-speed pulley 
assembly to the drive-head spindle at a constant speed ratio by means of a flat belt. 
Minimum spindle-to-clutch speed ratio is approximately 4. 36:1 and the maximum ratio 
is approximately 39. 2:1,    Use of the various  speed ratios makes a fairly constant maxi- 
mum horsepower available at the  spindle  regardless of speed,   since clutch horsepower 
output varies with speed. 

Due to the   sensitivity of clutch output-speed to load-change it was necessary to 
equip the test-machine drive mechanism with an electronic speed governor.     Circuit 
diagrams of the speed governor may be found in the Appendix B.    Basically the speed 
governor consists of a tachometer to supply feedback voltage,  amplifiers to increase the 
gain of the difference between feedback and signal voltage,   and magnetic amplifiers to 
change the speed correction voltage to an output suitable to power the eddy-current 
clutches. 

The speed governor is composed of Battelle-owned components and the circuit 
diagrams in Appendix B show the necessary wiring between the major assemblies. 
Wiring diagrams of the assemblies are not shown; instead the names and model numbers 
are listed. 

The motor and eddy-current clutch assembly is also Battelle owned.     The detail 
drawings of the shaft test machine show the names and model numbers of these 
components. 

Use of Test Machine.     As mentioned previously numerous high-speed shaft tests 
have been made.     A discussion follows of the technique involved and the problems 
encountered. 

Early in the experimental program a series of 1/8-,   1/4-,  and 1/2-inch-diameter 
shafts were tested in the machine to obtain correlation between calculated and observed 
critical speeds.    Good correlation was achieved with all sizes; however,  the  1/8-inch- 
diameter-shaft critical speeds proved extremely sensitive to axial shaft-end forces 
encountered when installing the shaft in the machine spindles.     To minimize the prob- 
lem and to permit ease in handling of the many shafts used,  the  1/4-inch-diameter size 
was chosen. 

In the early period of testing manually controlled speed regulation was found to be 
a disadvantage.     The sensitivity of the potentiometers,  which controlled eddy-current 
clutch excitation and shaft speed,  made ;t difficult to increase speed slowly through 
critical speeds.     There was insufficient time to obtain accurate critical-speed vibration 
amplitudes.     In addition without employing extra laboratory personnel it was impossible 
to record the speed at which maximum vibration amplitudes occurred.    To relieve the 
problem an electronically controlled speed governor was designed and constructed to 
maintain selected operating speeds with negligible drift.     The governor speed control 
was mounted in a small box which could be carried by the operator to any observation 
point along the test machine.     For convenience to the operator a meter showing shaft 
speed was also included in the control box. 

Methods of vibration-amplitude measurement were also a concern.     Originally,  a 
large-range dial indicator was mounted in a stand clamped to the test-machine bed. 
The indicator was equipped with a shoe riding on the test shaft.    At shaft speeds above 
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the very lowest the inertia of the  shoe and indicator mechanism would cause the indica- 
tor shoe to float at a position just in contact with the whirling shaft once per  revolution. 
The amplitude reading of the indicator was zero to peak in inches.    Although this  scheme 
performed as planned,   the indicator movement could not withstand such punishing 
service,  and its use was discontinued. 

Another device called a cathetometer was employed for a short time in amplitude 
measurement.     The cathetometer is an optical telescope-mounted to a graduated vertical 
vernier column.     Use of this instrument consisted of recording the height of the upper- 
and lowermost edges of the vibrating shaft from which peak-to-peak amplitude was ob- 
tained by subtraction.     This method produced precise values of shaft deflection,  but 
was extremely time consuming in its operation. 

Since hundreds of amplitude measurements were necessary for experimental 
evaluation of suitable high-speed shafting support parameters,  a simpler method of 
amplitude measurement was chosen.    A scale was mounted to the vertical leg of a 
combination square,  and the square set on the test bed just behind the vibrating shaft. 
By noting the dimensional height of the shaded projection of the vibrating shaft on the 
scale,  amplitude measurements to the nearest sixty-fourth of an inch were possible. 
This device was used in quite a number of tests because of its extreme portability and 
ease of operation. 

Another amplitude-indicating device used extensively was formed by the pillow- 
blocks mounted at intervals along the test shaft.     Primarily the pillow blocks  served 
as guards to contain the  shaft should it break or become disengaged from the machine 
during operation.     The blocks normally used were of 5/8-inch bore, providing sub- 
stantial clearance with the  1/4-inch-diameter test shafts.    It was found that vibration of 
the  1/4-inch-diameter shafts did not become  severe until peak-to-peak amplitude 
reached 1/4 to  3/8 inch.    Since 3/8 inch was the diametral clearance of the shafts and 
guards,  noise of the shaft contacting the guards was used to indicate unsatisfactory 
operation. 

Figure 55 shows a typical data sheet from one of the experiments.    The figure 
contains information concerning test shaft length and diameter,  and intermediate sup- 
port position along the shaft,  damping factor, and flexibility.    At the bottom of the 
figure is  recorded the first of the various critical speed vibrations of the shaft and sup- 
port system described.     For each critical speed the vibration mode of the shaft is 
drawn showing the relative position of the vibration loops and intermediate support. 
The fractions are in inches and denote peak-to-peak vibration amplitude.     To the left 
of the diagram is recorded the speed in rpm at which maximum amplitude was observed. 
When vibration amplitude reached 3/8 inch peak-to-peak the speed was suffixed "hit", 
meaning that the shaft contacted the guards.    Generally testing was continued into the 
higher operating speeds until,  at a certain critical speed,  the shaft contacted the guards. 
In most tests at the lowest criticals hitting occurred,  but this was not considered 
serious because  shaft bending stresses over the long spans were minor.    At high 
speeds where shaft length between nodes is short,  bending stresses become significant 
when shaft deflection is  sufficient to contact the guards. 

After operating with a certain set of damper parameters to a high speed at which 
the test shaft contacted the guards,  the machine was shut down momentarily.    Support 
position was then changed and a new data sheet started for the succeeding test.     Follow- 
ing a series of tests with the support moved in small increments a plot of satisfactory 
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shaft operating speed range versus support location for the particular support damping 
coefficient and spring rate was made.    Following evaluation a different value of damping 
or spring rate was chosen and the test process  repeated with the expectation of finding 
still better shaft operating behavior. 

The effect of torque on the critical speed was determined by roiating the shaft 
with the eddy-current brake energized.    Shaft action at these critical speeds was ob- 
served with a strobescope.    Steel shafts with a torsional yield strength of 36,000 psi, 
as well as others with 92,000 psi torsional yield,  were used in the torsion experiments. 

In initial tests of long  slender shafts,  the measured critical speeds exceeded the 
calculated values for shafts tested without axial torque applied.    In order to compare 
the experimental and the theoretical torque effects,  it was necessary to install the 
shafts with a certain value of mid-point deflection.    On the longer shafts,  *his amounted 
to a significant value.     The mid-point deflection is that which corresponds to the sag 
of a shaft caused by its own weight.     When shafts were installed with the calculated 
values of mid-point deflection,  measured and calculated critical speeds were in close 
agreement. 

Tests to determine the effects of torque on the first critical speed were conducted 
below the speed range of operation of the stroboscope,  and the angle-of-twist could not 
be observed when the shaft was rotating.     In order to measure the angle of twist and 
to determine the critical speed accurately,  the effect of torque on the natural frequency 
of lateral vibration was observed.     The problem of determining the frequencies of 
lateral vibration of a uniform beam subjected to an axial torque is identical to the prob- 
lem of determining the critical speeds of a rotating shaft subjected to an axial torque. 
With torque applied to the nonrotating shaft by means of a wrench and a spring  scale, 
the first natural frequency of lateral vibration was excited by striking the shaft. 

In certain tests of long slender shafts the measured critical speeds exceeded the 
calculated values.    This increase was attributed to tension applied to the shaft ends 
when installed in the test machine.    A number of torque tests were conducted to deter- 
mine the effect of tension induced in the shaft during installation,  and the effect of 
external axial force caused by the bearing preloading springs.     These tests were con- 
ducted on 1/8-inch-diameter shafts and 1/4-inch-diameter shafts. 

During the second phase of the  research program,   the effects of axial shaft-end 
and torque loads will be studied more fully.     To implement this work,   certain modifica- 
tions will be made to the experimental equipment.     One such change involves  changing 
the eddy-current brake to a device capable of delivering considerably more torque to the 
test shaft. 

Support Damping Measurement Equipment 

In order to determine the actual damping factors developed in the damped inter- 
mediate supports,  tests of two types were made.     Lower viscosity damping fluids 
composed of SAE 10,   30,  and 50 motor oil were tested by measuring the decay of 
damped free vibration at the damper.    Higher viscosity damping fluids including SAE 50 
motor oil and Viscasil 1000 and  10,000 silicone fluids were tested by measuring the 
energy required to sustain damped forced vibration at the damper. 
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A schematic diagram of the damped-free-vibration test apparatus is given in 
Figure 56.    With tfte proper mass and spring combination the damped bearing and 
flexure plate was caused to oscillate with lessening amplitude after first being dis- 
placed.    A linear-variable-differential-transformer core connected directly to the 
oscillating member by means of a dummy shaft interpreted damper position as a posi- 
tive or negative voltage.    The voltage curve was plotted with respect to time by a 
Sanborn recorder.    From the plots obtained calculations were made to determine the 
actual damping factors for the lighter viscosity oils. 

A schematic diagram of the damped-forced vibration test apparatus is given in 
Figure 57.    A 1/2-inch-diameter bar was inserted rigidly through the brake-head 
spindle.    A 1/4-inch-diameter tang was turned on a protruding end of the bar to act as 
an eccentric or crank with a 1/16-inch throw.    A damped intermediate support bearing 
was clamped to the crank just as it would fasten to a shaft under test.    A 1/8-inch- 
diameter long rod connected the drive-head and brake-head spindles.    When the test 
was run,  the torque necessary to operate the damper at a certain speed with the fixed 
eccentric motion was determined from the twist of the 1/8-inch-diameter shaft.   From 
the measured torque and speed values the damping coefficient was calculated. 

Method of Free-Vibration Damping Calculation.    Figure 58 is typical of the 
vibration-amplitude decay curves recorded to determine intermediate support damping 
coefficient.    The flexure plate was first displaced from its position of rest,  and then 
released to vibrate at its natural frequency.    Since damping was present,  vibration 
amplitude diminished until the system ceased to oscillate.    An LVDT interpreted flexure 
plate position as a voltage which,  when recorded, furnished a plot similar to that in 
the figure. 

FiMe INDEX 

FIGURE 58.    TYPICAL VIBRATION-AMPLITUDE DECAY CURVE 

Calculation of flexure-plate damping was made using the following equation: 

C =  In  (112) 

'k+  1 
where 
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C = damping coefficient,   lb-sec/in. 

m = flexure-plate mass,  lb-sec/in. 

w = natural frequency of the flexure plate assembly,   rad/sec 
n 

y = amplitude of the kth cycle,  in. 

v = amplitude of the kth + 1  cycle,   in. yk + 1 

This equation may be found in most vibration textbooks. 

Natural frequency,  u)   ,  was taken directly from the decay curves.     The recorder 
marked each decay curve in 1-second intervals,  which enabled direct measurement of 
the number of cycles occurring in 1  second.    Flexure-plate mass was determined by 
weighing all the vibrating parts including the  LVDT core,  and by adding one-third the 
weight of the flexure-plate support springs. 

Method of Forced-Vibration Damping Calculation.     Damping measurement tech- 
nique described in the free-vibration damping tests was  suitable for the lower viscosity 
fluids.    However,  when using the higher viscosities, flexure plate vibration diminished 
to zero during the second or third cycle,  which prevented accurate determination of 
damping fcictors.     To circumvent this problem a laboratory setup was made of a forced- 
vibration system,   shown in Figure 57. 

The flexure plate was made to oscillate in a circular path once per shaft revolu- 
tion by clamping its bearing to a crank with a   1/16-inch throw.    Springs attached to 
the four corners of the flexure plate prevented its  rotation.     The force required to 
drive the flexure plate through the circular path was determined by the angular twist 
of the  1/8-mch-diameter shaft driving the crank.     The velocity of the flexure plate with 
respect to the heavy outer support plates was directly proportional to speed.     Dividing 
force by velocity produces the  coefficient of viscous damping. 

(113) 

Calculation of the force necessary to overcome damping is as follows: 

T =    eGJ 

57. 3L ' 
where 

T = torque transmitted by 1/8-inch diameter in shaft,  in-lb. 

6   = angular windup in total shaft length,  degrees 

L = shaft length,  in. 

G = shear modulus of shaft material,   lb/in. 

J   = polar moment of inertia of shaft cross  section,   in. 

The force  required to sustain forced vibration in the presence of damping was found by 
dividing the torque of Equation (113) by the crank throw: 
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F=L=J^1 lb (114) 
R      57. 3LR 

where 

F = force necessary to sustain vibration of the damped flexure plate,  lb 

R = crank throw,  in. 

The tangential or peripheral velocity of the circular vibration path was determined 
easily: 

= 27TR rpm 

60 V 

where 

v = tangential velocity of the circular vibration path,   in. /sec 

rpm = rotation speed,   rev/sec. 

By definition the coefficient of viscous damping equals damping force per unit velocity, 
or: 

c=r = ^BGJ    
v      57. 3 x ZTTLR^rpm 

where 

C = damping coefficient,   lb-sec/in. 

Shaker-Table Equipment 

To make a preliminary determination of the ability of shaft coating;; to damp 
lateral shaft vibrations,   a shaker-table test was made.     The shaker consists of a mov- 
ing coil of wire in a magnetic field,   with a table attached to the moving coil.     When 
alternating current is fed to the coil,  it is forced to move vertically up and down to 
follow the   excitation frequency.     The current source is a variable-frequency audio- 
oscillator and amplifier.     Clamp blocks were machined to fasten the coated shaft speci- 
mens rigidly to the shaker table.     Details of the tests may be found in the   section 
discussing shafts with continuously applied damping coatings. 

Computer 

The digital-computer facility at Battelle consists of Bendix G-20 units.    It is an 
efficient machine which has  satisfactorily performed many shaft-deflection calculations 
and has also performed critical-speed determinations.     We consider the programs used 
to be correct in all respects. 

Prior to the installation of the new,  more efficient G-20 computer,  an IBM Model 
650 computer was in use.     The computer programs used in this research project are 
designed primarily for the  IBM 650,  but have been successfully adapted to the newer 
facility with an approximate doubling of speed resulting. 
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CONCLUSIONS 

In the past year,   research conducted with high-speed power-transmission shafts 
has produced significant results.     The major conclusions to be drawn are: 

(1) Power transmission by shafts operating at speeds above their first 
critical is practical,  since one or two dampers strategically located 
along the shaft have been shown to limit vibration very effectively. 

(2) A systematic procedure for the design of shaft dampers using an 
electrical analogy has been developed.    The initial experimental 
verification of the design procedure showed excellent performance. 
Using this procedure in a given power-transmission situation it is 
believed that a system of dampers can be designed to prohibit 
excessive and dangerous vibration amplitudes at the desired operating 
speeds.    Added experimental verification of this design procedure 
is required to prove it fully. 

(3) Once a suitable high-speed shaft system has been designed and 
demonstrated, similar operation can be achieved with shafts of 
other dimensions and materials by applying modeling equations 
developed in this program. Use of these equations can provide 
dynamically similar operation of dissimilar shafts by adjustment 
of damper parameters. 

The above conclusions are basic and show that power transmission by high-speed 
shafting is not a whimsical notion,  but is completely practical. 

Many other conclusions can be drawn as a result of the research,  and are dis- 
cussed in the following paragraphs. 

A digital-computer program has been formulated which correctly calculates the 
deflection shapes of shafts rotating at their critical speeds. A modified program has 
been used to determine the critical speeds,   and has excellent ability in this regard. 

Many experimental high-speed shafting tests have shown that,  with just one 
damper,   shafts can be operated at more than 60 times their first critical speed.    With 
two dampers, operation at even higher speeds was observed,  in one case reaching 
159 times the first critical speed.     Generally,  best operation occurred with the damper 
or  dampers positioned close to the ends offne transmission shafts. 

The design and analysis of high-speed shafting by electrical analogy adds under- 
standing to the experimental program.     The analogy shows,  for instance,  that broad 
tuning of the shaft system is not only dependent upon the damping coefficient,  but is 
also quite dependent upon the weight ratio of the damper to the shaft.     The smaller the 
ratio the wider is the acceptable  speed range of shaft operation.     Description of the 
mechanical shaft in terms applying to high-frequency electrical transmission lines 
opens the door to straightforward design of hypercritical-speed shafting,   since the 
electrical theories are  so highly developed. 
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Stcinck.rd formulas for determining shaf', critical speeds have been shown to be 
correct by research work.     For a shaft with one damper at any location along the shaft 
length,  critical speeds are readily predictable.    For multiple dampers the critical 
speeds are less accurately calculable by the approximate meihods ,  but are accurately 
calculated by the computer program used. 

Application of torque to high-speed shafting has been studied both theoretically 
and experimentally.    Although theory predicts a lowering of shaft critical speed,   experi- 
ment has not shown this to be so.     The application of torque has shown a tendency,  how- 
ever,  to cause a "corkscrew" shape at torsional shear stresses near the yield point of 
the material.    But neither the application of steady-state or intermittently applied 
torque has caused a change in lateral critical speed or vibration amplitude. 

Theory and experiment have shown that critical speed varies with axial shaft-end 
loading.     Tension on the shaft ends increases critical speed,  and   compression de- 
creases it. 

Experimental work has been conducted using shafts coated with damping ma- 
terials.    An improvement was noted in shaft operation at the lower critical speeds. 
Operation was totally unsatisfactory,  however,   at higher speeds.     Therefore,  this 
does not appear to be a solution to the vibration problem. 

Finally,  it is concluded that hollow tubing has the ability to transmit the same de- 
gree of power but with higher critical speeds and witb decreased shaft weight.   Examples 
in the Technical Work section of this report point out that solid shafts running at high 
speeds are capable of tremendous horsepower transmission but that hollow shafts can 
do the same work with less weight,  and encounter fewer critical speeds.    Hence, 
dampers need not be so highly refined.     The resulting decrease in weight for both 
dampers and shafts would appear highly attractive in applications to aircraft.    AH of 
the research results are equally applicable to the design of solid and tubular shafts. 
The only apparent reservation regarding the use of tubing is that tubing with extremely- 
thin walls may encounter other modes of vibration in. which the walls flex,  in addition 
to critical speed vibrations.    Additional investigation may identify this problem or 
eliminate it as a possible concern. 

RECOMMENDATIONS FOR FUTURE WORK 

The present Phase I research program has shown that power transmission by 
shafting operating above its first critical speed is quite practical.     Inclusion of dampers 
along the transmission shaft can reduce vibration to very small and acceptable values. 
To extend the understanding of high-speed power-transmission shafts the following 
tasks are recommended for study in the Phase II research program: 

I.    Basic High-Speed Shafting Research 

(1)   A comprehensive program of testing and computation should be conducted to 
fully confirm the analogy developed during Phase I,   relating high-speed shafting to high- 
frequency electrical transmission lines.     The analogy should be extended to include 
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shaft end terminations such as flexible couplings.    A systematic shaft design procedure 
based upon the analogy,  and using graphical aids where possible,   should be perfected. 

(2) The effects of initial shaft crookedness should be evaluated to determine the 
degree of accuracy required in the production of the high-speed power-transmission 
shafting.    In conjunction with this work, the practical advantages obtainable using tub- 
ing in place of solid shafting should be carefully investigated.    Theoretical studies indi- 
cate that thin-walled tubing shou.'.d have substantially higher critical speeds than solid 
shafting capable of transmitting the came torque.    The accuracy of commercially avail- 
able tubing in terms of straightness and concentricity may impose practical limitations 
which affect to some extent the theoretical advantages.    An experimental study should 
be conducted to ascertain the true situation. 

(3) The effect of moving the shaft supports from an aligned relationship to cause 
the shaft to operate around a gradual curve should be studied.    This mode of operation 
would correspond to the conditions imposed upon a shaft if it should be mounted in a 
flexible structure such as an aircraft wing which might assume various static deflec- 
tions.    In conjunction with this work, the dynamic behavior of flexible shaft couplings 
should be studied both experimentally and analytically.    Operation should be carried 
out under both aligned and misaligned conditions,  and with shaft ends concentric to, 
and eccentric to the main section of shaft. 

(4) Intermediate-shaft-support bearings capable of withstanding bending moments 
should be compared with intermediate-support bearings without moment-taking ability. 
In addition,   intermediate-shaft-support bearings capable of introducing damping when 
located at the positions of nodes of lateral shaft vibration should be evaluated 
experimentally. 

(5) The effects of torque upon shaft critical speed and vibration amplitude should 
be investigated more thoroughly.    Phase I research showed that theory predicted shaft 
critical-speed change with application of torque,  whereas experimental testing indi- 
cated neither critical speed nor vibration amplitude change. 

(6) The effect upon shaft behavior of external vibrations introduced to the shaft 
through the  shaft-support-bearing mounts should be investigated. 

II.     Design Studies of High Speed Aircraft Power Transmission Systems 

(1) Specific current or future aircraft power transmission systems should be 
analyzed to establish the parameters for which some of the experimental shafts in the 
research program would be designed.     This work should be augmented by design studies 
for specific applications.    This would ensure the earliest application and greatest utility 
of the research results. 

(2) Design  studies  should be made of damped support bearing configurations con- 
sidered realistic and suitable for aircraft installations.     Power dissipation to be 
expected at the dampers  should be determined. 

(3) Typical aircraft power transmission systems should be analyzed to determine 
the sources and effects of torsional vibrations.     These effects in conventional power- 
transmission systems should then be compared with the effects which would be developed 
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in high-speed shaft installations.    If objertionable torsional effects are identified in 
high-speed shaft systems,  means for damping or otherwise eliminating these effects 
should be  studied. 

III.     Preparation of a Design Manual for High-Speed Power- 
Transmission Shafting 

The  results of all of the   research activities carried out during Phases 1 and II 
should be incorporated into a design manual.     This design manual would relate all of 
the important shaft parameters  such as over-all length,   support   spacing,   shaft diam- 
eter,   shaft material,   allowable shaft crookedness,   required stiffness of bearing sup- 
ports,   shaft end restraint,   and necessary damping provisions,  to be used in designing 
a  shaft for any given horsepower and operating  speed.     Design data for shafts operating 
below the first critical speed would not necessarily be included.     The emphasis during 
the entire research program and in the design manual would be placed upon shaft 
operation above the first critical speed and,   in most cases,  at very high multiples of 
the first critical speed. 
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Data upon which this report is baised may be found in Battelle  Laboratory Record 
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18967,   18968,  and 19274. 
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APPENDIX B 

TEST-MACHINE SPEED-GOVERNOR CIRCUITRY 
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APPENDIX C 

ECCENTRICITIES OF SOME  TYPICAL EXPERIMENTAL SHAFTS 
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APPENDIX D 

HYSTERESIS WHIRLING 

One circumstance of interest inthe experimental program was observation of 
hysteresis whirling. Although this type of shaft vibration occurred just once during 
the  complete  series  of experiments,  mention is included to complete the   record. 

Normal shaft vibrations occur at discrete speeds  of shaft rotation.     At these 
critical speeds the vibrating shaft whirls about its undeflected axis at the same  rate as 
shaft rotation.     In other words fibers at the surface of the  shaft do not change length 
as  rotation position  changes. 

Hysteresis  whirling  is a self-excited vibration caused by the internal damping of 
the  shaft material.     Whirl can occur during a wide  speed range as long as shaft running 
speed is above the first critical.     The frequency of the hysteresis whirl is the same as 
the  shaft natural frequency.     Since whirl frequency  remains constant as  shaft running 
speed changes,  there is stress  reversal in the shaft fibers. 

The one instance of hysteresis whirl occurred with the  shaft clamped at the ends 
and set up on three  rigid evenly spaced intermediate  supports.     Whirling occurred 
continuously between 2570 rpm and 5000 rpm,  the fourth speed of the first group of 
natural modes and the first speed of the  second group of natural modes,   respectively. 
Although shaft speed varied whirl frequency remained 2570 rpm. 

Although hysteresis  whirling produces  stress   reversals,  it is not thought to be 
of importance.     The phenomenon was observed only once in the numerous experiments 
conducted,  and efforts  to duplicate it at a later date proved futile.     Also,  it is our 
opinion that hysteresis whirling will not take place when damped supports are included 
in the system.     Consequently the  subject appears to be of little more than academic 
interest in the design of high-speed power-transmission shafts.     Accounts of hysteresis 
whirling theory may be found in References (2) and (5). 
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